Changes between Version 33 and Version 34 of TestSuite/RadiativeInstability
- Timestamp:
- 07/13/11 16:13:19 (14 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
TestSuite/RadiativeInstability
v33 v34 37 37 Our module tests $\alpha=0,\frac{1}{2},1$. We plot (not in real units) $\Delta(T) \propto T$: 38 38 }}} 39 [[Image(http://www.pas.rochester.edu/~blin/ coolingfnc.png)]]39 [[Image(http://www.pas.rochester.edu/~blin/spr11/coolingfnc.png)]] 40 40 {{{ #!latex 41 41 \noindent $\alpha=0$ is plotted in blue. It is constant. In this case, we expect the gas to oscillate for a while. $\alpha=\frac{1}{2}$ is magenta. $\alpha=1$ is plotted in yellow. It is the strongest cooling. We expect the gas to cool the quickest in this case, i.e. rapid dampening of oscillations. … … 55 55 \hline 56 56 \textbf{Parameter} & \textbf{Variable} & \textbf{Value} & \textbf{Units} \\ \hline 57 Number Density & nScale & 1& $number/cm^3$ \\ \hline58 Mass Density & rScale & $ 1.6726\times10^{-24}$ & $g/cm^3$ \\ \hline59 Temperature & TempScale & $ 1\times10^6$ & K \\ \hline60 Pressure & pScale & $1. 3809 \times 10^{-10}$ & $dynes/cm^2$ \\ \hline61 Length & lScale & $ 1\times10^{13}$ & cm \\ \hline62 Velocity & VelScale & $ 9.0832\times10^6$ & cm/s \\ \hline63 Cooling & ScaleCool & $ 7.9738\times10^{15}$ & $\frac{g*s}{(cm/s)^5}$ \\ \hline64 Time & RunTimesc & $ 1.1009\times10^6$ & s \\ \hline57 Number Density & nScale & $2.99\times10^{14}$ & $number/cm^3$ \\ \hline 58 Mass Density & rScale & $ 5.00\times10^{-10}$ & $g/cm^3$ \\ \hline 59 Temperature & TempScale & $2.50\times10^6$ & K \\ \hline 60 Pressure & pScale & $1.03\times10^5$ & $dynes/cm^2$ \\ \hline 61 Length & lScale & $5.56\times10^{10}$ & cm \\ \hline 62 Velocity & VelScale & $1.44\times10^7$ & cm/s \\ \hline 63 Cooling & ScaleCool & $3.35\times10^{27}$ & $\frac{g*s}{(cm/s)^5}$ \\ \hline 64 Time & RunTimesc & $3.87\times10^3$ & s \\ \hline 65 65 \end{tabular} 66 66 \end{center} … … 68 68 \noindent Since $ScaleCool=\frac{rScale*lScale}{m_H^2*VelScale^3}$, the cooling function will be stronger the bigger rScale and lScale values are. Also, note that $T_{shock} \propto v_0^2$: 69 69 }}} 70 [[Image(http://www.pas.rochester.edu/~blin/ posttvel.png)]]70 [[Image(http://www.pas.rochester.edu/~blin/spr11/posttvel.png)]] 71 71 72 72 == Numerical Results