Changes between Version 9 and Version 10 of ThermalConduction
- Timestamp:
- 08/17/16 12:59:49 (8 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
ThermalConduction
v9 v10 15 15 $\chi_\perp = \kappa_\perp \frac{n}{B^2 T^{1/2}}$ 16 16 17 Just FYI, some references will define variables a bit differently, and write these equations like this: 18 19 $\rho c_v\frac{\partial T}{\partial t} = \nabla \cdot \left [\hat{b} \left ( \kappa_\parallel - \kappa_\perp \right ) \left ( \hat{b} \cdot \nabla T \right ) + \kappa_\perp \nabla T \right ]$ 20 21 $\kappa_\parallel = \c_\parallel T^{5/2}$ 22 23 $\kappa_\perp = \c_\perp \frac{n^2}{B^2 T^{1/2}}$ 24 25 where the c's are coefficients usually given as some number in references. 26 17 27 == Collecting power's of T == 18 28 … … 24 34 25 35 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$ 26 27 Just FYI, some references put T, n, and B dependencies into kappa, and write equation like this28 29 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{\kappa_\perp}{\left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{\kappa_\perp}{\left (\lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$30 36 31 37 == Einstein simplification ==