Changes between Version 8 and Version 9 of ThermalConduction
- Timestamp:
- 08/17/16 12:52:56 (8 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
ThermalConduction
v8 v9 24 24 25 25 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$ 26 27 Just FYI, some references put T, n, and B dependencies into kappa, and write equation like this 28 29 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{\kappa_\perp}{\left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{\kappa_\perp}{\left (\lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$ 26 30 27 31 == Einstein simplification ==