Changes between Version 6 and Version 7 of u/JCFeb0713


Ignore:
Timestamp:
02/07/13 15:58:44 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/JCFeb0713

    v6 v7  
    5151[[latex(T_H=\frac{\hbar c^3}{8 \pi GMk_B})]]
    5252
    53 If we assume that the Bekenstein-Hawking entropy times the Hawking temperature must equal the work done by gravity, then we have
     53If we assume that the work done by gravity must equal the increase in the Bekenstein-Hawking entropy, then we have
    5454
    5555[[latex(F=T_H\frac{\partial S_{BH}}{\partial x})]]
    5656
    5757
     58== Temperature of accelerated objects ==
     59
    5860[[Image(JC3.png, width=600)]]
    5961
    60 What about
     62Assume that
     63[[latex(\Delta S = 2\pi k_B)]]
    6164
    62  * Space has one emergent holographic direction. 
    63  * There is a change of entropy in the emergent direction
    64  * The number of degrees of freedom are proportional to the area of the screen
    65  * The energy is evenly distributed over these degrees of freedom.
     65when
     66
     67[[latex(\Delta x = \frac{\hbar}{mc})]]
     68
     69then
     70
     71[[latex(\Delta S = 2 \pi k_B \frac{mc}{\hbar}\Delta x)]]
     72
     73and as Unruh showed, an observer in an accelerated frame experiences a temperature
     74
     75[[latex(k_BT = \frac{1}{2\pi} \frac{\hbar a}{c})]]
     76
     77If we take this temperature and our entropy formula, and calculate the entropic force we recover
     78
     79[[latex(F=ma)]]
     80
     81
     82== What about gravitational force ==
     83
     84[[Image(JC2.png, width=600)]]
     85
     86If we assume that the number of degrees of freedom is proportional to the area of the enclosed space
     87
     88[[latex(N=\frac{Ac^3}{G\hbar})]]
     89
     90and that the temperature is determined by the equipartition rule
     91
     92
     93[[latex(E=\frac{1}{2}Nk_BT)]]
     94
     95and that the total energy is just the enclosed rest mass
     96
     97[[latex(E=Mc^2)]]
     98
     99we recover
     100[[latex(F=G\frac{Mm}{R^2})]]
    66101
    67102
    68103
     104