Changes between Version 7 and Version 8 of u/JCFeb0713


Ignore:
Timestamp:
02/14/13 14:21:42 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/JCFeb0713

    v7 v8  
    55
    66== Abstract ==
    7 Starting from 1st principles and general assumptions Newton's law of gravitation is shown to arise naturally and unavoidably in a theory in which space
    8 is emergent through a holographic scenario. Gravity is explained as an entropic
    9 force caused by changes in the information associated with the positions of ma-
    10 terial bodies. A relativistic generalization of the presented arguments directly
    11 leads to the Einstein equations. When space is emergent even Newton's law of
    12 inertia needs to be explained. The equivalence principle leads us to conclude
    13 that it is actually this law of inertia whose origin is entropic.
     7Starting from 1st principles and general assumptions Newton's law of gravitation is shown to  arise naturally and unavoidably in a theory in which space is emergent through a holographic scenario. Gravity is explained as an entropic force caused by changes in the information associated with the positions of material bodies. A relativistic generalization of the presented arguments directly leads to the Einstein equations. When space is emergent even Newton's law of inertia needs to be explained. The equivalence principle leads us to conclude that it is actually this law of inertia whose origin is entropic.
    148
    159
     
    1913 * Newton's law of Gravity (and Gravity in general) is an emergent phenomena much like Hooke's law
    2014
    21 == Gravity as an entropic force ==
     15== Entropic force ==
    2216
    2317[[Image(JC1.png, width=600)]]
     
    2923we can derive
    3024
    31 [[latex(\frac{F}{T}=\frac{\partial S}{\partial x} = -C x)]]
     25[[latex(F=T\frac{\partial S}{\partial x})]]
     26
     27which for polymers gives Hooke's law
    3228
    3329[[latex(F = -C T x)]]
    3430
    35 === Black hole entropy ===
    3631
    37 Proportional to surface area of even horizon
    3832
    39 [[latex(S_{BH}=\frac{kA}{4l_p^2})]]
     33== Background ==
     34Black hole "thermodynamics"
     35[http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.cmp/1103858973 Bardeen, Cater, and Hawking 1973]
     36
     37|| [[latex(M)]] || black hole mass ||
     38|| [[latex(A)]] || black hole surface area ||
     39|| [[latex(g)]] || black hole surface gravity ||
     40|| [[latex(\Omega_H)]] || horizon angular velocity ||
     41|| [[latex(J_H)]] || black hole angular momentum ||
     42|| [[latex(\bar{\mu})]] || red shifted chemical potential ||
     43|| [[latex(\bar{\theta})]] || red shifted temperature ||
     44
     45Correspondence between Temperature and Entropy with surface gravity and area
     46|| Zeroth Law || [[latex(g)]] constant over horizon for stationary black hole || [[latex(T)]] is constant for a body in thermal equilibrium ||
     47|| First Law || [[latex(d M=\frac{g}{8\pi}dA+\Omega dJ+\phi dQ)]] || [[latex(dU = TdS - pdV + \mu dN)]] ||
     48|| Second Law || [[latex(\delta A >= 0)]] || [[latex(dS >= 0)]] ||
     49|| Third Law || [[latex(g > 0)]] || [[latex(T > 0)]] ||
     50
     51Black hole 'entropy'
     52[[latex(S = \frac{k_B A}{4 l_p^2})]]
    4053
    4154where
     
    4356[[latex(l_p=\sqrt{G\hbar/c^3})]]
    4457
    45 (BH does not stand for 'black hole', but for Bekenstein-Hawking)
    46 
    47 Entropy is stored on surface ' holographic principle'
    48 
    49 Black holes also have a Hawking Temperature
    50 
    51 [[latex(T_H=\frac{\hbar c^3}{8 \pi GMk_B})]]
    52 
    53 If we assume that the work done by gravity must equal the increase in the Bekenstein-Hawking entropy, then we have
    54 
    55 [[latex(F=T_H\frac{\partial S_{BH}}{\partial x})]]
    5658
    5759
    58 == Temperature of accelerated objects ==
     60Bekenstein's thought experiment...
     61When lowering a particle into a black hole, information about the particle is lost, so entropy of black hole should increase.  This corresponds to an increase in area of
     62
     63[[latex(dA >= 8 \pi \frac{G m r}{c^2} )]]
     64
     65and an entropy increase of
     66
     67[[latex(d S >= 2 \pi k_B \frac{m r c}{\hbar})]]
     68
     69If we use the reduced compton radius for the particle we get
     70
     71[[latex(d S >= 2 \pi k_B)]]
     72
     73''1 bit of information lost as the particle merges with the black hole''
     74
     75If we assume that this change in energy occurs linearly over the particle's compton radius then we have
     76
     77[[latex(dS >= 2 \pi k_B \frac{mc}{\hbar} d x )]]
     78
     79and if we calculate the entropic force:
     80
     81[[latex(F = T \frac{dS}{dx})]]
     82
     83we have [[latex(F = k_B T 2 \pi \frac{mc}{\hbar})]]
     84
     85
     86''' For a black hole this entropy is presumably stored on the horizon - 1 bit for every square planck length - holographic principle'''
     87
     88
     89=== Hawking radiation ===
     90
     91[[latex(T = \frac{\hbar g}{1\pi k_B c})]]
     92
     93where
     94
     95[[latex(g = \frac{GM}{r_s^2})]]
     96
     97so we have [[latex(F = \frac{mc^4}{4GM} = mg)]]
     98
     99
     100=== Unruh effect: an observer in an accelerated frame experiences a non zero vacuum temperature  ===
     101
     102[[latex(T = \frac{\hbar a}{2\pi k_B c})]]
     103
     104Verlinde supposes that the entropy is stored on a holographic screen bounding emerged part of space...
    59105
    60106[[Image(JC3.png, width=600)]]
    61107
    62 Assume that
    63 [[latex(\Delta S = 2\pi k_B)]]
     108which leads to an entropic force [[latex(F = k_B T 2 \pi \frac{mc}{\hbar} = ma)]]
    64109
    65 when
    66 
    67 [[latex(\Delta x = \frac{\hbar}{mc})]]
    68 
    69 then
    70 
    71 [[latex(\Delta S = 2 \pi k_B \frac{mc}{\hbar}\Delta x)]]
    72 
    73 and as Unruh showed, an observer in an accelerated frame experiences a temperature
    74 
    75 [[latex(k_BT = \frac{1}{2\pi} \frac{\hbar a}{c})]]
    76 
    77 If we take this temperature and our entropy formula, and calculate the entropic force we recover
    78 
    79 [[latex(F=ma)]]
     110Newton's 2nd law!
    80111
    81112
    82 == What about gravitational force ==
     113== What about gravitational force around a non-black hole?==
    83114
    84115[[Image(JC2.png, width=600)]]
    85116
    86 If we assume that the number of degrees of freedom is proportional to the area of the enclosed space
     117If we assume that the number of degrees of freedom is proportional to the area of the enclosed space like an event horizon
    87118
    88119[[latex(N=\frac{Ac^3}{G\hbar})]]
     
    100131[[latex(F=G\frac{Mm}{R^2})]]
    101132
    102 
    103 
    104