Changes between Version 8 and Version 9 of u/JCFeb0713


Ignore:
Timestamp:
02/14/13 15:52:07 (12 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/JCFeb0713

    v8 v9  
    3838|| [[latex(A)]] || black hole surface area ||
    3939|| [[latex(g)]] || black hole surface gravity ||
    40 || [[latex(\Omega_H)]] || horizon angular velocity ||
    41 || [[latex(J_H)]] || black hole angular momentum ||
    42 || [[latex(\bar{\mu})]] || red shifted chemical potential ||
    43 || [[latex(\bar{\theta})]] || red shifted temperature ||
     40|| [[latex(\Omega)]] || horizon angular velocity ||
     41|| [[latex(J)]] || black hole angular momentum ||
     42|| [[latex(\phi)]] || electric potential ||
     43|| [[latex(Q)]] || electric charge ||
    4444
    4545Correspondence between Temperature and Entropy with surface gravity and area
     
    4949|| Third Law || [[latex(g > 0)]] || [[latex(T > 0)]] ||
    5050
    51 Black hole 'entropy'
    52 [[latex(S = \frac{k_B A}{4 l_p^2})]]
     51Black hole 'entropy' should be proportional to area.  Dimensional analysis gives:
     52
     53[[latex(S_{BH} = \frac{k_B A}{4 l_p^2})]]
    5354
    5455where
     
    5657[[latex(l_p=\sqrt{G\hbar/c^3})]]
    5758
     59and S,,BH,, stands for Bekenstein-Hawking entropy (not Black Hole).
     60
    5861
    5962
    6063Bekenstein's thought experiment...
    61 When lowering a particle into a black hole, information about the particle is lost, so entropy of black hole should increase.  This corresponds to an increase in area of
     64When lowering a particle into a black hole, information about the particle is lost, so entropy of black hole should increase.  This corresponds to an minimal increase in area of
    6265
    6366[[latex(dA >= 8 \pi \frac{G m r}{c^2} )]]
     
    7174[[latex(d S >= 2 \pi k_B)]]
    7275
    73 ''1 bit of information lost as the particle merges with the black hole''
     76''1 possible microstate is lost to system as the particle merges with the black hole''
    7477
    7578If we assume that this change in energy occurs linearly over the particle's compton radius then we have
     
    102105[[latex(T = \frac{\hbar a}{2\pi k_B c})]]
    103106
    104 Verlinde supposes that the entropy is stored on a holographic screen bounding emerged part of space...
    105107
    106108[[Image(JC3.png, width=600)]]
     
    115117[[Image(JC2.png, width=600)]]
    116118
     119What should be the temperature of the screen?
     120
    117121If we assume that the number of degrees of freedom is proportional to the area of the enclosed space like an event horizon
    118122
    119 [[latex(N=\frac{Ac^3}{G\hbar})]]
     123[[latex(N=\frac{A}{l_p^2})]]
    120124
    121125and that the temperature is determined by the equipartition rule
     
    128132[[latex(E=Mc^2)]]
    129133
    130 we recover
     134we get
     135
     136[[latex(T=\frac{2 l_p^2 Mc^2}{k_B A} = \frac{G \hbar M}{k_B 2\pi R^2 c}
     137
     138and
     139
    131140[[latex(F=G\frac{Mm}{R^2})]]
    132