Changes between Version 22 and Version 23 of u/afrank


Ignore:
Timestamp:
08/25/16 12:28:00 (8 years ago)
Author:
Adam Frank
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/afrank

    v22 v23  
    55
    66= Exo-civilization Planetary Feedback Equation Derivation =
     7
     8We begin with three coupled equations for the interaction between a eco-civilization population (N), a resource and which they draw energy from (R) and the state of the planetary environment (E).
     9
     10$\frac{dN}{dt} =\alpha_N N - \beta_N N - \alpha_{NR} \beta_{RN}(R) N$
     11
     12$\frac{dR}{dt} = -\beta_{RN}(N) R + \beta_{ER}(E) R $
     13
     14$\frac{dE}{dt} =  \gamma_E(E) E + \alpha_{NE}(N)  E  + \alpha_{RE}(R) $
     15
     16
     17In the equations above $\alpha$ is used for "birth" terms and $\beta$ is used for "death" terms.
     18
     19In the above,
     20
     21$\alpha_N$ is the per captia population birth rate.
     22
     23$\beta_N$  is the per captia population death rate.
     24
     25$\alpha_{NR}$ is the per captia additional birth rate gained from extraction/consumption of resource $R$.
     26
     27$\beta_{RN}(R)$ is the per captia extraction/consumption rate of resource $R$.
     28
     29$\beta_{NR}(N)$ is the per unit extraction/consumption rate of resource $R$.
     30
     31$\beta_{ER}(E)$ is the "per unit" reduction in resource extraction due to changes in planetary environmental state.
     32
     33$\gamma_E(E)$ is measure of capacity of planetary environment to return to an pre-civilization equilibrium state ($E_o$).
     34 
     35$\alpha_{NE}(N)$ is per captia forcing of environment from pre-civilization equilibrium state ($E_o$).
     36
     37$\alpha_{NE}(N)$ is per unit forcing of environment from pre-civilization equilibrium state ($E_o$) based on resource extraction.
     38
     39== Now we propose models for terms.
     40
     41== (1) Population
     42Let the percaptja death rate be dependent on an environmentally dependent carrying capacity $K(E)$
     43
     44$\beta_N = \alpha_N \frac{N}{K(E)} $
     45
     46Let the per captia additional birth rate gained from extraction/consumption of resource $R$ be,
     47
     48$\beta_{R}(R) = \beta_R R$
     49
     50Thus we our population ODE now becomes a form of the competition predator-prey models
     51
     52 
     53$\frac{dN}{dt} =\alpha_N N ( 1 - \frac{N}{K(E)}) - \alpha_{NR} \beta_{R} R N$
     54
     55In what follows we will use
     56
     57$K(E) = \frac{E-E_c}{E_c-E_o}$
     58
     59== (2) Resource
     60
     61Let the per captia and per unit extraction/consumption rate of resource $R$ be the same
     62
     63$\beta_{RN} = \beta_{NR}$
     64
     65and let the  "per unit" reduction in resource extraction due to changes in planetary environmental state be
     66
     67$\beta_{RE} = \beta_{RN} N R (\frac{E}{E_c})$
     68
     69where $E_c$ is a "critical" state of the system above which no resource can be extracted. 
     70
     71
     72Thus our resource equation becomes.
     73
     74$\frac{dR}{dt} = \beta_{RN} N R (\frac{E}{E_c}-1)$
     75
     76
     77== (3) Environment
     78
     79Let $\gamma_E$ give a form that acts like logistic growth/decline
     80
     81$\gamma_E(E) = \alpha_E(1- \frac{E}{E_o})$
     82
     83Choose a simple form for per captia environmental driving and resource driving,
     84
     85$ \alpha_{NE}(N) = \alpha_{EN} N$
     86
     87$\alpha_{ER}(R) = \alpha_{ER} \beta_{RN} R N$
     88
     89We also choose a simple form of the carrying capacity which lowers the capacity as E approaches the critical value
     90
     91Thus our Environment equation becomes
     92
     93$\frac{dE}{dt} =  \alpha_E E (1- \frac{E}{E_o}) +  \alpha_{EN} N  E  + \alpha_{ER} \beta_{RN} R N$
     94
     95= Exo-civilization Planetary Feedback Equations =
     96
     97Our final equations are
     98 
     99$\frac{dN}{dt} =\alpha_N N ( 1 - \frac{N}{\frac{E-E_c}{E_c-E_o}}) - \alpha_{NR} \beta_{R} R N$
     100
     101$\frac{dR}{dt} = \beta_{RN} N R (\frac{E}{E_c}-1)$
     102
     103$\frac{dE}{dt} =  \alpha_E E (1- \frac{E}{E_o}) +  \alpha_{EN} N  E  + \alpha_{ER} \beta_{RN} R N$
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
    7126
    8127[[CollapsibleEnd]]