Changes between Version 24 and Version 25 of u/afrank


Ignore:
Timestamp:
08/28/16 16:15:41 (8 years ago)
Author:
Adam Frank
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/afrank

    v24 v25  
    66= Exo-civilization Planetary Feedback Equation Derivation =
    77
     8
     9== Begin with most general form.
     10
    811We begin with three coupled equations for the interaction between a eco-civilization population (N), a resource and which they draw energy from (R) and the state of the planetary environment (E).
    912
    10 $\frac{dN}{dt} =\alpha_N N - \beta_N N - \alpha_{NR} \beta_{RN}(R) N$
    11 
    12 $\frac{dR}{dt} = -\beta_{RN}(N) R + \beta_{ER}(E) R $
    13 
    14 $\frac{dE}{dt} =  \gamma_E(E) E + \alpha_{NE}(N)  E  + \alpha_{RE}(R) $
    15 
    16 
    17 In the equations above $\alpha$ is used for "birth" terms and $\beta$ is used for "death" terms.
     13$\frac{dN}{dt} =B_N - D_N + B_{RN}$
     14
     15$\frac{dR}{dt} = -D_{NR} + D_{ER} $
     16
     17$\frac{dE}{dt} =  H_E + D_{NE}  + D_{RE} $
     18
     19
     20In the equations above generally B is used "birth" terms that increase the variable and D is used for "death" terms that decrease the variable though the meaning depends on the case.  Each there terms may have dependencies on the other variables (the "phase space" variables (N,R,E) and other parameters/constraints.
    1821
    1922In the above,
    2023
    21 $\alpha_N$ is the per captia population birth rate.
    22 
    23 $\beta_N$  is the per captia population death rate.
    24 
    25 $\alpha_{NR}$ is the per captia additional birth rate gained from extraction/consumption of resource $R$.
    26 
    27 $\beta_{RN}(R)$ is the per captia extraction/consumption rate of resource $R$.
    28 
    29 $\beta_{NR}(N)$ is the per unit extraction/consumption rate of resource $R$.
    30 
    31 $\beta_{ER}(E)$ is the "per unit" reduction in resource extraction due to changes in planetary environmental state.
    32 
    33 $\gamma_E(E)$ is measure of capacity of planetary environment to return to an pre-civilization equilibrium state ($E_o$).
     24$B_N$ is the population natural birth rate. 
     25
     26$D_N$  is the population death rate.
     27
     28$B_{RN}$ is the additional population birth rate gained from extraction/consumption of resource $R$.
     29
     30$D_{NR}$ is the extraction/consumption rate of resource $R$ due to activity of $N$.
     31
     32$D_{ER}$ is the modification of extraction/consumption rate of resource $R$ due to changes in planetary environmental state $E$.
     33
     34$H_E$ is measure of capacity of planetary environment to return to an pre-civilization equilibrium state ($E_o$).
    3435 
    35 $\alpha_{NE}(N)$ is per captia forcing of environment from pre-civilization equilibrium state ($E_o$).
    36 
    37 $\alpha_{NE}(N)$ is per unit forcing of environment from pre-civilization equilibrium state ($E_o$) based on resource extraction.
    38 
    39 == Now we propose models for terms.
    40 
    41 == (1) Population
    42 Let the percaptja death rate be dependent on an environmentally dependent carrying capacity $K(E)$
    43 
    44 $\beta_N = \alpha_N \frac{N}{K(E)} $
    45 
    46 Let the per captia additional birth rate gained from extraction/consumption of resource $R$ be,
    47 
    48 $\beta_{R}(R) = \beta_R R$
    49 
    50 Thus we our population ODE now becomes a form of the competition predator-prey models
    51 
    52  
    53 $\frac{dN}{dt} =\alpha_N N ( 1 - \frac{N}{K(E)}) - \alpha_{NR} \beta_{R} R N$
    54 
    55 In what follows we will use
     36$D_{NE}$ is the forcing of the planetary environment from pre-civilization equilibrium state ($E_o$) due to non-resource based population activity.
     37
     38$D_{RE}$ is the forcing of the planetary environment from pre-civilization equilibrium state ($E_o$) due to resource based population activity.
     39
     40
     41== Choosing forms for the terms.
     42
     43All alpha terms represent either growth rates or measures of the effect of variable $i$ on variable "j".
     44
     45
     46$B_N = \alpha_N N$.
     47
     48$D_N = \alpha_N N \frac{N}{K(E)}$
     49
     50where the death rate is now dependent on an environmentally dependent carrying capacity K(E).
     51
     52$B_{RN} = \alpha_{RN} \beta_{NR} N R$
     53
     54where $\alpha_{RN}$ is the per captia additional birth rate gained from extraction/consumption of resource R and $\beta_{NR}$ is the per captia extraction/consumption rate of resource R
     55
     56$D_{NR} = \beta_{NR} N R$
     57
     58$D_{ER} = \beta_{NR} N R (\frac{E}{E_c})$
     59
     60where $E_c$ is the critical environmental state beyond which $E>E_c$ resource extraction is no longer possible.
     61
     62$H_E = \alpha_E E (1- \frac{E}{E_o})$
     63
     64$D_{NE} = \alpha_{EN} N$
     65
     66$D_{ER}= \alpha_{ER} \beta_{RN} R N$
     67
     68Finally for the carrying capacity we choose,
    5669
    5770$K(E) = \frac{E-E_c}{E_c-E_o}$
    5871
    59 == (2) Resource
    60 
    61 Let the per captia and per unit extraction/consumption rate of resource $R$ be the same
    62 
    63 $\beta_{RN} = \beta_{NR}$
    64 
    65 and let the  "per unit" reduction in resource extraction due to changes in planetary environmental state be
    66 
    67 $\beta_{RE} = \beta_{RN} N R (\frac{E}{E_c})$
    68 
    69 where $E_c$ is a "critical" state of the system above which no resource can be extracted. 
    70 
    71 
    72 Thus our resource equation becomes.
    73 
    74 $\frac{dR}{dt} = \beta_{RN} N R (\frac{E}{E_c}-1)$
    75 
    76 
    77 == (3) Environment
    78 
    79 Let $\gamma_E$ give a form that acts like logistic growth/decline
    80 
    81 $\gamma_E(E) = \alpha_E(1- \frac{E}{E_o})$
    82 
    83 Choose a simple form for per captia environmental driving and resource driving,
    84 
    85 $ \alpha_{NE}(N) = \alpha_{EN} N$
    86 
    87 $\alpha_{ER}(R) = \alpha_{ER} \beta_{RN} R N$
    88 
    89 We also choose a simple form of the carrying capacity which lowers the capacity as E approaches the critical value
    90 
    91 Thus our Environment equation becomes
    92 
    93 $\frac{dE}{dt} =  \alpha_E E (1- \frac{E}{E_o}) +  \alpha_{EN} N  E  + \alpha_{ER} \beta_{RN} R N$
    9472
    9573= Exo-civilization Planetary Feedback Equations =
     
    10381
    10482$\frac{dE}{dt} =  \alpha_E E (1- \frac{E}{E_o}) +  \alpha_{EN} N  E  + \alpha_{ER} \beta_{RN} R N$
    105 
    106 
    107 
    108 
    109 
    110 
    111 
    112 
    113 
    114 
    115 
    116 
    117 
    118 
    119 
    120 
    121 
    122 
    123 
    124 
    125 
    12683
    12784