Changes between Version 9 and Version 10 of u/erica/JeansInstability
- Timestamp:
- 06/21/13 12:12:14 (11 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/erica/JeansInstability
v9 v10 76 76 Taking the positive root and plugging into [[latex($\rho_1$)]], we see 77 77 78 [[latex($\rho_1 \propto e^{-i i [4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})] t}$)]]78 [[latex($\rho_1 \propto e^{-i i [4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}t}$)]] 79 79 80 80 which gives 81 81 82 [[latex($\rho_1 = C \cos(kx) e^{[4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})] t}$)]]82 [[latex($\rho_1 = C \cos(kx) e^{[4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}t}$)]] 83 83 84 84 85 85 Thus we have found the condition on [[latex($\omega$)]] which gives unstable perturbation modes. Now, the growth rate of these modes is given by 86 86 87 [[latex($\Gamma = 4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})$)]]87 [[latex($\Gamma = [4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}$)]] 88 88 89 89 and so the characteristic timescale for exponential growth, that is the time in which the perturbation increases by a factor of e, is given by … … 91 91 [[latex($\tau = \frac{1}{\Gamma}$)]] 92 92 93 = High lambda limit, i.e. pressure-less collapse, i.e. uniform collapse=93 = High lambda limit, i.e. pressure-less collapse, or 'uniform collapse' = 94 94 95 95 From 96 97 [[latex($\rho_1 = C \cos(kx) e^{[4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}t}$)]] 98 99 it is easy to see that in the limit 100 101 [[latex($\lambda \rightarrow \infty$)]] 102 103 for finite [[latex($\lambda_J$)]] (i.e. pressure gradients are null/gravity dominates), the characteristic collapse time becomes 104 105 [[latex($\tau = [\frac{1}{4 \pi G \rho0}]^{1/2} ~ \frac{1}{2} t_ff$)]] 106 107 where [[latex($t_ff$)]] is the freefall time for a spherical region of uniform gas. 108 109 = Writing a module to test self-gravity using the Jeans Instability = 110 111 I go through the procedure of setting up the problem on this page here. 112