Changes between Version 9 and Version 10 of u/erica/JeansInstability


Ignore:
Timestamp:
06/21/13 12:12:14 (11 years ago)
Author:
Erica Kaminski
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/erica/JeansInstability

    v9 v10  
    7676Taking the positive root and plugging into [[latex($\rho_1$)]], we see
    7777
    78 [[latex($\rho_1 \propto e^{-i i [4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]t}$)]]
     78[[latex($\rho_1 \propto e^{-i i [4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}t}$)]]
    7979
    8080which gives
    8181
    82 [[latex($\rho_1 = C \cos(kx) e^{[4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]t}$)]]
     82[[latex($\rho_1 = C \cos(kx) e^{[4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}t}$)]]
    8383
    8484
    8585Thus we have found the condition on [[latex($\omega$)]] which gives unstable perturbation modes. Now, the growth rate of these modes is given by
    8686
    87 [[latex($\Gamma = 4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})$)]]
     87[[latex($\Gamma = [4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}$)]]
    8888
    8989and so the characteristic timescale for exponential growth, that is the time in which the perturbation increases by a factor of e, is given by
     
    9191[[latex($\tau = \frac{1}{\Gamma}$)]]
    9292
    93 = High lambda limit, i.e. pressure-less collapse, i.e. uniform collapse =
     93= High lambda limit, i.e. pressure-less collapse, or 'uniform collapse' =
    9494
    95  
     95From
     96
     97[[latex($\rho_1 = C \cos(kx) e^{[4 \pi G \rho_0 (1-\frac{\lambda_J^2}{\lambda^2})]^{1/2}t}$)]]
     98
     99it is easy to see that in the limit
     100
     101[[latex($\lambda \rightarrow \infty$)]]
     102
     103for finite [[latex($\lambda_J$)]] (i.e.  pressure gradients are null/gravity dominates), the characteristic collapse time becomes
     104
     105[[latex($\tau = [\frac{1}{4 \pi G \rho0}]^{1/2} ~ \frac{1}{2} t_ff$)]]
     106
     107where [[latex($t_ff$)]] is the freefall time for a spherical region of uniform gas.
     108
     109= Writing a module to test self-gravity using the Jeans Instability =
     110
     111I go through the procedure of setting up the problem on this page here.
     112