Changes between Version 31 and Version 32 of u/erica/MusclHancock


Ignore:
Timestamp:
06/18/13 11:50:36 (11 years ago)
Author:
Erica Kaminski
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/erica/MusclHancock

    v31 v32  
    3636  [[latex($u_i(x) = u_i^n + (x - x_i) \frac{\triangle _i }{\triangle x}, x \in [0, \triangle x]$)]]
    3737
    38   where [[latex($ \triangle _i $)]] is called a 'slope' for [[latex($ u_i ^n $)]], that is, for the elements of [[latex($ \vec{u} $)]] in cell i on the nth time level. Using a linear function produces 2 extreme values of each cell, one on the left and on the right: [[latex($ u_l $)]] and [[latex($ u_r $)]], respectively. These values are crucial in the MH scheme and their role will be presented shortly. Their values are given by [[latex($ u_l = u_i(0) = u_i ^n - \frac{1}{2} \triangle_ i $)]] and [[latex($ u_r = u_i(0) = u_i ^n + \frac{1}{2} \triangle_ i $)]]. A schematic of the situation is as follows:
     38  where
     39
     40  [[latex($ \triangle _i $)]]
     41
     42  is called a 'slope' for
     43 
     44  [[latex($ u_i ^n $)]],
     45 
     46  that is, for the elements of
     47  [[latex($ \vec{u} $)]]
     48  in cell i on the nth time level. Using a linear function produces 2 extreme values of each cell, one on the left and on the right:
     49
     50  [[latex($ u_l $)]]
     51  and
     52
     53  [[latex($ u_r $)]],
     54  respectively. These values are crucial in the MH scheme and their role will be presented shortly. Their values are given by
     55  [[latex($ u_l = u_i(0) = u_i ^n - \frac{1}{2} \triangle_ i $)]]
     56  and
     57   [[latex($ u_r = u_i(0) = u_i ^n + \frac{1}{2} \triangle_ i $)]]
     58   A schematic of the situation is as follows:
    3959
    4060  [[Image(MusclReconstruction.png, 35%)]]
     
    4464  [[latex($ \frac{\partial \vec{u}}{\partial t} + \frac{\partial f(\vec{u})}{\partial x} = 0 $)]]
    4565
    46   [[latex($ u(x,0) = { \frac{u_i^r, x\<0}{u_{i+1}^l, x\>0} $)]]
     66  [[latex($ u(x,0) = \frac{u_i^r, x\<0}{u_{i+1}^l, x\>0} $)]]
    4767
    4868 where 0 is the local origin, i.e. any given intercell boundary.