Changes between Version 33 and Version 34 of u/erica/MusclHancock


Ignore:
Timestamp:
06/18/13 12:12:46 (11 years ago)
Author:
Erica Kaminski
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/erica/MusclHancock

    v33 v34  
    4747  [[latex($ \vec{u} $)]]
    4848  in cell i on the nth time level. Using a linear function produces 2 extreme values of each cell, one on the left and on the right (ul and ur). These values are crucial in the MH scheme and their role will be presented shortly. Their values are given by
    49   [[latex($ u_l = u_i(0) = u_i ^n - \frac{1}{2} \triangle_ i $)]]
     49
     50  [[latex($ u_i ^l = u_i(0) = u_i ^n - \frac{1}{2} \triangle_ i $)]]
     51
    5052  and
    51    [[latex($ u_r = u_i(0) = u_i ^n + \frac{1}{2} \triangle_ i $)]]
     53
     54  [[latex($ u_i ^r = u_i(\triangle x) = u_i ^n + \frac{1}{2} \triangle_ i $)]]
    5255   A schematic of the situation is as follows:
    5356
     
    5861  [[latex($ \frac{\partial \vec{u}}{\partial t} + \frac{\partial f(\vec{u})}{\partial x} = 0 $)]]
    5962
     63
     64  [[latex($ u(x,0) =  \{ ^{u_i^r,~~~~ x <0}_{u_{i+1}^l, ~~x>0} $)]]
    6065 
    6166
    62  where 0 is the local origin, i.e. any given intercell boundary.
     67 where 0 is the local origin, i.e. any given intercell boundary. We will discuss meaningful ways to set the extreme values, ul and ur, shortly. For now we will just call the data-reconstruction step that which sets the extreme values using the above formula. Given that the expressions for ul and ur involve the slope  [[latex($ \triangle _i$)]], we define
     68
     69   [[latex($ \triangle_i = \frac{1}{2}(1+\omega)\triangle u_{i-\frac{1}{2}} + \frac{1}{2}(1-\omega)\triangle u_{i+\frac{1}{2}} $)]]
     70
     71 where w is a free parameter in the real interval [-1,1].
     72
     73   [[latex($\triangle u_{i-\frac{1}{2}} \equiv u_i^n - u_{i-1}^n$)]]
     74
     75  [[latex($\triangle u_{i+\frac{1}{2}} \equiv u_{i+1}^n - u_{i}^n$)]]
     76
     77
     78 
    6379
    6480