Changes between Version 95 and Version 96 of u/erica/RoeSolver


Ignore:
Timestamp:
05/31/13 14:35:15 (11 years ago)
Author:
Erica Kaminski
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/erica/RoeSolver

    v95 v96  
    113113[[latex($\triangle r = r_R - r_L$)]]
    114114
    115 
    116 = Entropy Fix =
    117 
    118 
    119 
    120115= A Sample Algorithm =
    121116
     
    147142As stated above, the Rho flux is given by:
    148143
    149 [[latex(\vec{F}_{i+1/2} = \vec{F}_L + lambda*alpha*\vec{K})]]
     144[[latex($\vec{F}_{i+1/2} = \vec{F}_L + lambda*alpha*\vec{K}$)]]
    150145
    151146Where [[latex(\vec{K}_{i+1/2})]] is the vector of ''numerical'' fluxes, [[latex(\vec{F}_L)]] is the vector of physical fluxes for the left state, lambda and [[latex(\vec{K})]] are the eigenvalues and eigenvectors, and alpha is the wave speed, all with corresponding expressions given in detail above.
     
    153148For the case of sonic rarefactions, the lambda in the above equation for Roe's flux must be adjusted, and following the Harten-Hyman approach, is taken to be:
    154149
    155 [[latex(\lambda ' = (u_L-a_L)*\frac{ustar-astarL-\lambda}{ustar-astarL-u_L+a_L}]]
     150[[latex($\lambda ' = (u_L-a_L)*\frac{ustar-astarL-\lambda}{ustar-astarL-u_L+a_L}$)]]
    156151
    157152for a left sonic rarefaction. For a right sonic rarefaction, the coefficients are slightly adjusted. Note that the entropy fix requires estimates for the velocity and sound speed of the star region, ustar and astarL. We get estimates of these using the Roe approach for linearizing the Euler equations. They are listed in Toro, section 11.4.3.