Changes between Version 1 and Version 2 of u/erica/radtimescales


Ignore:
Timestamp:
03/29/16 14:54:34 (9 years ago)
Author:
Erica Kaminski
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/erica/radtimescales

    v1 v2  
    77We get:
    88
    9 [[latex($t_{diff}\approx \frac{L^2}{c}\frac{\kappa_R \rho}{\lambda}$)]]
     9[[latex($\boxed{t_{diff}\approx \frac{L^2}{c}\frac{\kappa_R \rho}{\lambda}}$)]]
    1010
    1111L is the size of our system, c is speed of light, kappa_R is the rosseland specific mean opacity, rho is density of the system, and lamba is a dimensional parameter that has to do with gradient length scales of the radiative energy.
     
    1515[[latex($\kappa_R=.23 \frac{cm^2}{g}$)]]
    1616
    17 for T=10 K gas.  
     17for T=10 K gas. Assuming our system is a protostellar core, we have L~.1 pc, rho~1 solar mass/L^3^. In cgs these parameters work out to be:
    1818
     19|| c || 3e+10 ||
     20|| [[latex($\rho$)]] || 6.5e-20 ||
     21|| L || 1/2*3.08e+17 ||
     22|| [[latex($\kappa_R$)]]|| .23 ||
     23
     24(For L, the radiation is leaving from the center of the volume, so is going approximately 1 half the length). I do not know what an appropriate [[latex($\lambda$)]] is... can't find a reference to it in Offner's paper... So letting [[latex($\lambda = 1$)]] gives:
     25
     26[[latex($\boxed{t_{diff}\approx 15,000 ~s}$)]]
     27
     28or ~ 4hrs.
     29
     30
     31That is a pretty quick diffusion time, considering the 'free streaming limit' gives:
     32
     33 
     34
     35
     36 
     37