| 69 | | [[latex($\frac{\nabla E}{E}=\frac{d(\ln E}{E}$)]] |
| | 69 | [[latex($\frac{\nabla E}{E}=\frac{d(\ln E)}{dx}$)]] |
| | 70 | |
| | 71 | so if we make the approximation, |
| | 72 | |
| | 73 | [[latex($\frac{\nabla E}{E}\approx -\frac{1}{h}$)]] |
| | 74 | |
| | 75 | (by dimensional arguments and assuming the gradient is negative), we have: |
| | 76 | |
| | 77 | [[latex($\frac{d(\ln E)}{dx}=-\frac{1}{h}$)]] |
| | 78 | |
| | 79 | which integrates to: |
| | 80 | |
| | 81 | [[latex($\ln E = \ln E_0 - \frac{x}{h}$)]] |
| | 82 | |
| | 83 | or, |
| | 84 | |
| | 85 | [[latex($E = E_0 e^{ - \frac{x}{h}}$)]] |
| | 86 | |
| | 87 | From this equation, it is clear that h is the scale-height. Thus, by writing R as: |
| | 88 | |
| | 89 | [[latex($R \approx |-\frac{\tau_R}{L \rho}| \approx \frac{\tau_R}{h \rho}$)]] |
| | 90 | |
| | 91 | we can set h to be the distance between the sink and box side (h=L), and imagine it as the scale height for the radiation. |
| | 92 | |
| | 93 | |