| 19 | |
| 20 | |
| 21 | == Vis-visa equation == |
| 22 | $v = \sqrt{\mu} \sqrt{\frac{2}{r}-\frac{1}{a}}$ |
| 23 | |
| 24 | $T = 2 \pi \sqrt{\frac{a^3}{\mu}}$ |
| 25 | |
| 26 | $v^2=\mu(\frac{2}{r}-\frac{1}{a})$ |
| 27 | |
| 28 | now since $\mu = v_k^2 r$ we have |
| 29 | |
| 30 | $v^2=v_k^2 (2 - r/a)$ which can be solved for $a$ |
| 31 | |
| 32 | And the angular momentum is |
| 33 | |
| 34 | $h = r \times v$ |
| 35 | |
| 36 | which can be used to solve for $e$ |
| 37 | |
| 38 | $(1-e^2)=\frac{h^2}{r^2v_k^2} \frac{r}{a}$ |
| 39 | |
| 40 | We can then calculate the phase using |
| 41 | |
| 42 | $l=\frac{b^2}{a}=\left ( 1-e^2 \right )a$ |
| 43 | |
| 44 | $r=\frac{l}{1+e \cos \theta}$ |
| 45 | |
| 46 | $\frac{r}{a} = \frac{(1-e^2)}{1+e \cos \theta}$ |
| 47 | |
| 48 | $\cos{\theta}=\frac{(1-e^2)a-r}{re} $ |
| 49 | |
| 50 | |
| 51 | == General case == |
| 52 | |
| 53 | FIrst calculate the semi-major axis |
| 54 | |
| 55 | $c_s^2+v_k^2+2 c_s v_k \sin \phi = v_k^2 (2-r/a)$ |
| 56 | |
| 57 | $r/a = 1 - x^2-2x \sin \phi$ |
| 58 | |
| 59 | $a = \frac{r}{1-x^2-2x \sin \phi}$ |
| 60 | |
| 61 | Note that this sets a limit on $x$ for material remaining elliptical... |
| 62 | |
| 63 | $x^2+2x-1=0$ |
| 64 | |
| 65 | $x = \sqrt{2}-1 = .414...$ |
| 66 | |
| 67 | |
| 68 | Setting $a=r$ gives us the location that launches an elliptic orbit with the same period |
| 69 | |
| 70 | $x^2+1+2x \sin \phi=2-r/a$ |
| 71 | |
| 72 | $x+2 \sin \phi = 0$ |
| 73 | |
| 74 | $\phi = \sin^{-1} \left ( -x / 2 \right )$ |
| 75 | |
| 76 | |
| 77 | We can then calculate the ellipticity using |
| 78 | |
| 79 | $h=r v_k (1+x\sin\phi)$ |
| 80 | |
| 81 | $e = \sqrt{1 - \frac{h^2}{a r v_k^2}} = \sqrt{1 - (1+x \sin \phi)^2\frac{r}{a}}$ |
| 82 | |
| 83 | $e = \sqrt{1 - (1+x \sin \phi)^2 (1 - x^2-2x \sin \phi)}$ |
| 84 | |
| 85 | |
| 86 | And the phase using |
| 87 | |
| 88 | $\cos{\theta}=\frac{(1-e^2)a-r}{re} $ |
| 89 | |
| 90 | $\cos{\theta}=\frac{(1+x \sin \phi)^2-1}{ \sqrt{1 - (1+x \sin \phi)^2(1 - x^2-2x \sin \phi)}}$ |
| 91 | |
| 92 | |
| 93 | |
| 94 | $\sin{\phi} = 1 \rightarrow e = \sqrt{1 - (1 + x)^2(1-x^2-2x)} = \sqrt{1 - ( (1 + 2x + x^2)(1 - x^2 - 2x))} = \sqrt{1 - (1 - x^2 - 2x + 2x - 2x^3 - 4x^2 + x^2 - x^4 - 2x^3)} = \sqrt{1-(1 - 4x^3 - 4x^2 - x^4 )} = \sqrt{4x^2+4x^3+x^4} = 2x+x^2$ |
| 95 | |
| 96 | |
| 97 | |
| 98 | |
| 99 | |
| 100 | == parallel kick== |
| 101 | $ (c_s \pm v_k)^2 = v_k^2 (2-r/a)$ |
| 102 | |
| 103 | $ (x \pm 1)^2=2-r/a $ |
| 104 | |
| 105 | $ 1 \pm 2 x + x^2 = (2-r/a)$ |
| 106 | |
| 107 | |
| 108 | $ \pm 2x + x^2 = 1 - r/a$ |
| 109 | |
| 110 | $a = \frac{r}{1 \mp 2x - x^2}$ |
| 111 | |
| 112 | $(1 \mp e)=\frac{r}{a}={1 \mp 2x - x^2}$ |
| 113 | |
| 114 | $e = 2x \pm x^2$ |
| 115 | |
| 116 | == orthogonal kick == |
| 117 | $c_s^2 + v_k^2=v_k^2 (2-r/a)$ |
| 118 | |
| 119 | $x^2=(1 - r/a)$ |
| 120 | |
| 121 | $a = \frac{r}{1-x^2}$ |
| 122 | |
| 123 | $h = r \times v = r v_k$ |
| 124 | |
| 125 | $(1-e^2)=\frac{h^2}{a\mu} = \frac{r}{a}$ |
| 126 | |
| 127 | $e = \sqrt{1 - \frac{r}{a}} = \sqrt{1-x^2}$ |
| 128 | |
| 129 | $r=\frac{l}{1+e \cos \theta}$ |
| 130 | |
| 131 | $l=\frac{b^2}{a}=\left ( 1-e^2 \right )a$ |
| 132 | |
| 133 | $\frac{r}{a} = \frac{(1-e^2)}{1+e \cos \theta}$ |
| 134 | |
| 135 | $\cos{\theta}=\frac{(1-e^2)a-r}{re} $ |
| 136 | |
| 137 | $1-x^2=\frac{x^2}{1+\sqrt{1-x^2}\cos \theta}$ |
| 138 | |
| 139 | $\cos{\theta} = \frac{\frac{x^2}{1-x^2} - 1}{\sqrt{1-x^2}}$ |
| 140 | |
| 141 | $\cos{\theta} = \frac{2 x^2 - 1}{\left ( 1-x^2 \right)^{3/2}}$ |
| 142 | |
| 143 | For outer edge, we are headed toward aphelion so perihelion must have $\theta$ must be between $0$ and $\pi$ |
| 144 | |
| 145 | For inner edge we are headed toward perihelion, so $\theta$ must be between $\pi$ and $2 \pi$ |
| 146 | |
| 147 | == Equi-period direction == |
| 148 | |
| 149 | $c_s^2+v_k^2+2 c_s v_k \sin \phi = v_k^2 (2-r/a)$ |
| 150 | |
| 151 | $x^2+1+2x \sin \phi=2-r/a$ |
| 152 | |
| 153 | $x+2 \sin \phi = 0$ |
| 154 | |
| 155 | $\phi = \sin^{-1} \left ( -x / 2 \right )$ |
| 156 | |
| 157 | == Arbitrary direction == |
| 158 | |
| 159 | $c_s^2+v_k^2+2 c_s v_k \sin \phi = v_k^2 (2-r/a)$ |
| 160 | |
| 161 | $r/a = 1 - x^2-2x \sin \phi$ |
| 162 | |
| 163 | $h=r v_k (1+x\sin\phi)$ |
| 164 | |
| 165 | $e = \sqrt{1 - \frac{h^2}{a r v_k^2}} = \sqrt{1 - (1+x \sin \phi)^2\frac{r}{a}}$ |
| 166 | |
| 167 | $e = \sqrt{1 - (1+x \sin \phi)^2 (1 - x^2-2x \sin \phi)}$ |
| 168 | |
| 169 | |
| 170 | |
| 171 | $\sin{\phi} = 1 \rightarrow e = \sqrt{1 - (1 + x)^2(1-x^2-2x)} = \sqrt{1 - ( (1 + 2x + x^2)(1 - x^2 - 2x))} = \sqrt{1 - (1 - x^2 - 2x + 2x - 2x^3 - 4x^2 + x^2 - x^4 - 2x^3)} = \sqrt{1-(1 - 4x^3 - 4x^2 - x^4 )} = \sqrt{4x^2+4x^3+x^4} = 2x+x^2$ |
| 172 | |
| 173 | |