Vis-visa equation
v = \sqrt{\mu} \sqrt{\frac{2}{r}-\frac{1}{a}}
T = 2 \pi \sqrt{\frac{a^3}{\mu}}
v^2=\mu(\frac{2}{r}-\frac{1}{a})
now since \mu = v_k^2 r we have
v^2=v_k^2 (2 - r/a) which can be solved for a
And the angular momentum is
h = r \times v
which can be used to solve for e
(1-e^2)=\frac{h^2}{r^2v_k^2} \frac{r}{a}
We can then calculate the phase using
l=\frac{b^2}{a}=\left ( 1-e^2 \right )a
r=\frac{l}{1+e \cos \theta}
\frac{r}{a} = \frac{(1-e^2)}{1+e \cos \theta}
\cos{\theta}=\frac{(1-e^2)a-r}{re}
General case
FIrst calculate the semi-major axis
c_s^2+v_k^2+2 c_s v_k \sin \phi = v_k^2 (2-r/a)
r/a = 1 - x^2-2x \sin \phi
a = \frac{r}{1-x^2-2x \sin \phi}
Note that this sets a limit on x for material remaining elliptical…
x^2+2x-1=0
x = \sqrt{2}-1 = .414...
Setting a=r gives us the location that launches an elliptic orbit with the same period
x^2+1+2x \sin \phi=2-r/a
x+2 \sin \phi = 0
\phi = \sin^{-1} \left ( -x / 2 \right )
We can then calculate the ellipticity using
h=r v_k (1+x\sin\phi)
e = \sqrt{1 - \frac{h^2}{a r v_k^2}} = \sqrt{1 - (1+x \sin \phi)^2\frac{r}{a}}
e = \sqrt{1 - (1+x \sin \phi)^2 (1 - x^2-2x \sin \phi)}
And the phase using
\cos{\theta}=\frac{(1-e^2)a-r}{re}
\cos{\theta}=\frac{(1+x \sin \phi)^2-1}{ \sqrt{1 - (1+x \sin \phi)^2(1 - x^2-2x \sin \phi)}}
parallel kick
(c_s \pm v_k)^2 = v_k^2 (2-r/a)
(x \pm 1)^2=2-r/a
1 \pm 2 x + x^2 = (2-r/a)
\pm 2x + x^2 = 1 - r/a
a = \frac{r}{1 \mp 2x - x^2}
(1 \mp e)=\frac{r}{a}={1 \mp 2x - x^2}
e = 2x \pm x^2
orthogonal kick
c_s^2 + v_k^2=v_k^2 (2-r/a)
x^2=(1 - r/a)
a = \frac{r}{1-x^2}
h = r \times v = r v_k
(1-e^2)=\frac{h^2}{a\mu} = \frac{r}{a}
e = \sqrt{1 - \frac{r}{a}} = \sqrt{1-x^2}
r=\frac{l}{1+e \cos \theta}
l=\frac{b^2}{a}=\left ( 1-e^2 \right )a
\frac{r}{a} = \frac{(1-e^2)}{1+e \cos \theta}
\cos{\theta}=\frac{(1-e^2)a-r}{re}
1-x^2=\frac{x^2}{1+\sqrt{1-x^2}\cos \theta}
\cos{\theta} = \frac{\frac{x^2}{1-x^2} - 1}{\sqrt{1-x^2}}
\cos{\theta} = \frac{2 x^2 - 1}{\left ( 1-x^2 \right)^{3/2}}
For outer edge, we are headed toward aphelion so perihelion must have \theta must be between 0 and \pi
For inner edge we are headed toward perihelion, so \theta must be between \pi and 2 \pi
Equi-period direction
c_s^2+v_k^2+2 c_s v_k \sin \phi = v_k^2 (2-r/a)
x^2+1+2x \sin \phi=2-r/a
x+2 \sin \phi = 0
\phi = \sin^{-1} \left ( -x / 2 \right )
Arbitrary direction
c_s^2+v_k^2+2 c_s v_k \sin \phi = v_k^2 (2-r/a)
r/a = 1 - x^2-2x \sin \phi
h=r v_k (1+x\sin\phi)
e = \sqrt{1 - \frac{h^2}{a r v_k^2}} = \sqrt{1 - (1+x \sin \phi)^2\frac{r}{a}}
e = \sqrt{1 - (1+x \sin \phi)^2 (1 - x^2-2x \sin \phi)}
\sin{\phi} = 1 \rightarrow e = \sqrt{1 - (1 + x)^2(1-x^2-2x)} = \sqrt{1 - ( (1 + 2x + x^2)(1 - x^2 - 2x))} = \sqrt{1 - (1 - x^2 - 2x + 2x - 2x^3 - 4x^2 + x^2 - x^4 - 2x^3)} = \sqrt{1-(1 - 4x^3 - 4x^2 - x^4 )} = \sqrt{4x^2+4x^3+x^4} = 2x+x^2