3 | | || Generalized Ohm's law || $\frac{m_e}{n e^2} \frac{\partial J}{\partial t} - \frac{1}{ne}\nabla \cdot \mathbf{P_e} = \mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} - \frac{1}{nec} \mathbf{J} \times \mathbf{B} - \frac{\mathbf{J}}{\sigma}$ || |
4 | | || Ideal MHD || $0 = \mathbf{E} + \frac{1}{c} \mathbf{v}\times \mathbf{B}$ || |
5 | | || Resistive MHD || $ 0 = \mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} - \frac{\mathbf{J}}{\sigma}$ || |
6 | | || Hall MHD || $0 = \mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{B} - \frac{1}{nec} \mathbf{J} \times \mathbf{B}$ || |
| 4 | $\frac{m_e}{n e^2} \frac{\partial J}{\partial t} - \frac{1}{ne}\nabla \cdot \mathbf{P_e} = \mathbf{E} + \mathbf{v} \times \mathbf{B} - \eta\mathbf{J} - \frac{1}{ne} \mathbf{J} \times \mathbf{B} $ |
| 5 | |
| 6 | And then under certain conditions, we can ignore various terms yielding various approximations |
| 7 | |
| 8 | || Resistive + Hall MHD || $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \mathbf{J} \times \mathbf{B}$ || |
| 9 | || Resistive MHD || $ \mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}$ || |
| 10 | || Ideal MHD || $\mathbf{E} = - \mathbf{v}\times \mathbf{B}$ || |
| 11 | |
| 12 | === Electromagnetic energy === |
| 13 | We also need Poynting's theorem for the change in electro-magnetic energy |
| 14 | |
| 15 | $\frac{\partial e}{\partial t} = - \nabla \cdot \mathbf{S} - \mathbf{J}\cdot \mathbf{E} $ |
| 16 | |
| 17 | which is just the net loss of energy due to diverging electromagnetic Poynting flux $\mathbf{S} = \mathbf{E} \times \mathbf{B}$ minus the work done on the charge distribution $\mathbf{J} \cdot \mathbf{E} $ |
| 18 | |
| 19 | === Induction equation === |
| 20 | |
| 21 | $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$ |
| 22 | |
| 23 | === Ampere's equation === |
| 24 | (without Maxwell's correction for time varying electric field) |
| 25 | |
| 26 | $\mathbf{J} = \nabla \times \mathbf{B}$ and |
| 27 | |
| 28 | === Lorentz force law === |
| 29 | $\frac{\partial \rho \mathbf{v}}{\partial t}=\mathbf{J} \times \mathbf{B}$ |
| 30 | |
| 31 | === Final set of equations === |
| 32 | |
| 33 | $\frac{\partial \rho \mathbf{v}}{\partial t} = \mathbf{J} \times \mathbf{B} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$ |
| 34 | |
| 35 | $\frac{\partial e}{\partial t} = -\nabla \cdot \left ( \mathbf{E} \times \mathbf{B} \right) - \left ( \nabla \times \mathbf{B} \right) \cdot \mathbf{E} $ |
| 36 | |
| 37 | $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) $ |
11 | | $\frac{\partial \mathbf{B}}{\partial t} = -c \nabla \times \mathbf{E}$ |
| 43 | $\mathbf{E} = -\mathbf{v} \times \mathbf{B} $ |
| 44 | |
| 45 | into the equations above and after some vector calculus, manage to write momentum and energy as a total divergence (and the field as a curl) |
| 46 | |
| 47 | $\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$ |
| 48 | |
| 49 | $\frac{\partial e}{\partial t} = \nabla \cdot \left ( \left (\mathbf{v} \times \mathbf{B} \right ) \times \mathbf{B} \right) + \left ( \nabla \times \mathbf{B} \right) \cdot \left ( \mathbf{v} \times \mathbf{B} \right) = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} \right]$ |
| 50 | |
| 51 | $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) $ |
| 52 | |
| 53 | == Resistive MHD == |
| 54 | |
| 55 | $ \mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} = -\mathbf{v} \times \mathbf{E} + \eta \nabla \times \mathbf{B}$ |
| 56 | |
| 57 | into the equations above and after some vector calculus, manage to write momentum and energy as a total divergence (and the field as a curl) |
| 58 | |
| 59 | $\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$ |
| 60 | |
| 61 | $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \left ( \eta \nabla \times \mathbf{B} \right ) \times \mathbf{B} \right]$ |
| 62 | |
| 63 | $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} \right ) $ |
| 64 | |
| 65 | Note the energy equation is missing the additional $\mathbf{J} \cdot \mathbf{\eta \mathbf{J}}$ term which would correspond to the loss in magnetic energy due to ohmic dissipation. However this loss in magnetic energy is balanced by a gain in thermal energy - so those terms cancel in the final energy equation. |
| 66 | |
| 67 | |
| 68 | == Hall+Resistive MHD == |
| 69 | |
| 70 | $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \mathbf{J} \times \mathbf{B}$ |
| 71 | |
| 72 | |
| 73 | $\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$ |
| 74 | |
| 75 | $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \left ( \eta \nabla \times \mathbf{B} \right ) \times \mathbf{B} - \left ( \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) \times \mathbf{B} \right]$ |
| 76 | |
| 77 | $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} \right ) - \nabla \times \left ( \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) $ |
| 78 | |
| 79 | |
| 80 | We can also combine the Hall and Resistive terms |
| 81 | |
| 82 | $\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$ |
| 83 | |
| 84 | $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \left ( \eta \nabla \times \mathbf{B} + \left ( \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) \right ) \times \mathbf{B} \right]$ |
| 85 | |
| 86 | $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} + \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) $ |
| 87 | |
| 88 | Or defining $\mathbf{E}' = \eta \nabla \times \mathbf{B} + \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} $ |
| 89 | |
| 90 | $\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$ |
| 91 | |
| 92 | $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \mathbf{E}' \times \mathbf{B} \right]$ |
| 93 | |
| 94 | $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \mathbf{E}' $ |
| 95 | |
| 96 | |
| 97 | |
| 98 | |
| 99 | This along with |