Changes between Version 2 and Version 3 of u/johannjc/scratchpad28


Ignore:
Timestamp:
12/22/20 13:41:39 (4 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad28

    v2 v3  
    1 == Generalized Equations ==
    2 We start with a Generalized Ohm's law
     1=== MHD equations ===
     2
     3
     4|| Poynting's theorem (electromagnetic energy) || $\frac{\partial e}{\partial t} = - \nabla \cdot \mathbf{S} - \mathbf{J}\cdot \mathbf{E}  $ ||
     5|| Poynting vector || $\mathbf{S} = \mathbf{E} \times \mathbf{B} $ ||
     6|| Induction equation || $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$ ||
     7|| Ampere's equation (without Maxwell's correction) || $\mathbf{J} = \nabla \times \mathbf{B}$ ||
     8|| Lorentz Force Law || $\frac{\partial \rho \mathbf{v}}{\partial t}=\mathbf{J} \times \mathbf{B}$ ||
     9
     10=== Equations for momentum, magnetic energy, and magnetic field ===
     11Subsituting Ampere's equation and the definition of the Poynting vector into the equations for momentum, magnetic energy, and the magnetic field, we arrive at
     12
     13$\frac{\partial \rho \mathbf{v}}{\partial t} = \mathbf{J} \times \mathbf{B} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$
     14
     15$\frac{\partial e}{\partial t} = -\nabla \cdot \left ( \mathbf{E}  \times \mathbf{B} \right) - \left ( \nabla \times \mathbf{B} \right) \cdot \mathbf{E} $
     16
     17$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) $
     18
     19== Ohm's Law ==
     20Not the momentum equation only involves the magnetic field $\mathbf{B}$ and is the same regardless of the electric field $\mathbf{E}$.  Note it is also already in a form involving a total divergence making it straightforward to implement in a conservative finite volume scheme.  The energy and induction equation, however, will depend on our choice of $\mathbf{E}$.
     21
     22The $\mathbf{E}$ field can be calculated using a Generalized Ohm's law
    323
    424$\frac{m_e}{n e^2} \frac{\partial J}{\partial t} - \frac{1}{ne}\nabla \cdot \mathbf{P_e} = \mathbf{E} + \mathbf{v} \times \mathbf{B} - \eta\mathbf{J} - \frac{1}{ne} \mathbf{J} \times \mathbf{B} $
    525
    6 And then under certain conditions, we can ignore various terms yielding various approximations
     26Under under certain conditions, we can ignore various terms resulting in the following approximations
    727
    828|| Resistive + Hall MHD || $\mathbf{E} =  -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} +  \frac{1}{ne} \mathbf{J} \times \mathbf{B}$ ||
     
    1030|| Ideal MHD || $\mathbf{E} = - \mathbf{v}\times \mathbf{B}$ ||
    1131
    12 === Electromagnetic energy ===
    13 We also need Poynting's theorem for the change in electro-magnetic energy
    14 
    15 $\frac{\partial e}{\partial t} = - \nabla \cdot \mathbf{S} - \mathbf{J}\cdot \mathbf{E} $
    16 
    17 which is just the net loss of energy due to diverging electromagnetic Poynting flux $\mathbf{S} = \mathbf{E} \times \mathbf{B}$ minus the work done on the charge distribution $\mathbf{J} \cdot \mathbf{E} $
    18 
    19 === Induction equation ===
    20 
    21 $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$
    22 
    23 === Ampere's equation ===
    24 (without Maxwell's correction for time varying electric field)
    25 
    26 $\mathbf{J} = \nabla \times \mathbf{B}$ and
    27 
    28 === Lorentz force law ===
    29 $\frac{\partial \rho \mathbf{v}}{\partial t}=\mathbf{J} \times \mathbf{B}$
    30 
    31 === Final set of equations ===
    32 
    33 $\frac{\partial \rho \mathbf{v}}{\partial t} = \mathbf{J} \times \mathbf{B} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$
    34 
    35 $\frac{\partial e}{\partial t} = -\nabla \cdot \left ( \mathbf{E}  \times \mathbf{B} \right) - \left ( \nabla \times \mathbf{B} \right) \cdot \mathbf{E} $
    36 
    37 $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) $
    3832
    3933
     
    4337$\mathbf{E} = -\mathbf{v} \times \mathbf{B} $
    4438
    45 into the equations above and after some vector calculus, manage to write momentum and energy as a total divergence (and the field as a curl)
     39into the equations above and after some vector calculus (including a very messy vector quadruple product with a del operator), manage to write the energy term as a total divergence (and the field as a curl)
     40
     41$\frac{\partial e}{\partial t} = \nabla \cdot \left ( \left (\mathbf{v} \times \mathbf{B} \right ) \times \mathbf{B} \right) + \left ( \nabla \times \mathbf{B} \right) \cdot \left ( \mathbf{v} \times \mathbf{B} \right) = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} \right]$
     42
     43$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) $
     44
     45== Resistive MHD ==
     46
     47For resistive MHD, it will be convenient to define the resistive component of the electric field
     48$ \color{green}{\mathbf{E}_{\scriptscriptstyle R} =  \eta \mathbf{J} = \eta \nabla \times \mathbf{B}}$
     49
     50Then our total electric field is given by
     51
     52$ \mathbf{E} = -\mathbf{v} \times \mathbf{B} \color{green}{+ \mathbf{E}_{\scriptscriptstyle R}}$
     53
     54We then need to add this contribution to the induction equation $\color{green}{-\nabla \times \mathbf{E'}}$ and the energy equation where it enters both the Poynting flux $-\color{green}{\nabla \cdot \left ( \mathbf{E'} \times \mathbf{B} \right)}$ and the work done on the the charge distribution $\color{green}{ - \mathbf{J} \cdot \mathbf{E'}}$. 
     55
     56However the work done on the charge distribution would need to also be added to the thermal energy cancelling any changes in the total energy due to the $\color{green}{\mathbf{J} \cdot \mathbf{E}_{\scriptscriptstyle R}}$ term.  This leaves us with.
     57
     58$\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v}  \color{green}{- \mathbf{E}_{\scriptscriptstyle R} \times \mathbf{B}} \right] $
     59
     60$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) \color{green}{ - \nabla \times \mathbf{E}_{\scriptscriptstyle R}} =  \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right)  \color{green}{- \nabla \times \left ( \eta \nabla \times \mathbf{B} \right )} $
     61
     62Note the resistive part of the induction equation
     63
     64$\frac{\partial \mathbf{B}}{\partial t} =  \color{green}{- \nabla \times \left ( \eta \nabla \times \mathbf{B} \right )} $
     65
     66can be expanded as
     67
     68$\frac{\partial \mathbf{B}}{\partial t} =  \color{green}{- \nabla \times \left ( \eta \nabla \times \mathbf{B} \right ) = \eta \nabla^2 \mathbf{B} -  \vec{\nabla} \mathbf{B}  \cdot \nabla \eta} $
     69
     70Which hints to the diffusive nature of the resistive term.  It also involves a second derivative so the time stepping criteria will be $\Delta t \propto \Delta x^2$ and an implicit solve might be worth considering.
     71
     72== Hall+Resistive MHD ==
     73
     74As in resistive MHD, it will be convenient to define the Hall component of the electric field
     75$ \color{red}{\mathbf{E}_{\scriptscriptstyle H} =} \color{red}{  \frac{1}{ne} \mathbf{J} \times \mathbf{B} =  \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right ) \times \mathbf{B}}$
     76
     77Then our total electric field is given by
     78
     79$ \mathbf{E} = -\mathbf{v} \times \mathbf{B} \color{green}{+ \mathbf{E}_{\scriptscriptstyle R}} \color{red}{+\mathbf{E}_{\scriptscriptstyle H}}$
     80
     81Again we need to add the additional electric field component to the energy equation (in both the Poynting Flux and the work on the charge distribution) as well as the induction equation.  Also note in this case the electric field is perpendicular to the current - so it does no work on the charge distribution.
     82
     83$\mathbf{J} \cdot \color{red}{\mathbf{E}_{\scriptscriptstyle H}} = \mathbf{J} \cdot \color{red}{\frac{1}{ne} \mathbf{J} \times \mathbf{B}} = 0$
     84
     85So as in the Resistive case, only the Poynting Flux term needs to be added to the energy equation.
    4686
    4787$\frac{\partial \rho \mathbf{v}}{\partial t} =  \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$
    4888
    49 $\frac{\partial e}{\partial t} = \nabla \cdot \left ( \left (\mathbf{v} \times \mathbf{B} \right ) \times \mathbf{B} \right) + \left ( \nabla \times \mathbf{B} \right) \cdot \left ( \mathbf{v} \times \mathbf{B} \right) = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} \right]$
    50 
    51 $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) $
    52 
    53 == Resistive MHD ==
    54 
    55 $ \mathbf{E} = -\mathbf{v} \times \mathbf{B} +  \eta \mathbf{J} =  -\mathbf{v} \times \mathbf{E} + \eta \nabla \times \mathbf{B}$
    56 
    57 into the equations above and after some vector calculus, manage to write momentum and energy as a total divergence (and the field as a curl)
    58 
    59 $\frac{\partial \rho \mathbf{v}}{\partial t} =  \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$
    60 
    61 $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v}  - \left ( \eta \nabla \times \mathbf{B} \right ) \times \mathbf{B} \right]$
    62 
    63 $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} \right ) $
    64 
    65 Note the energy equation is missing the additional $\mathbf{J} \cdot \mathbf{\eta \mathbf{J}}$ term which would correspond to the loss in magnetic energy due to ohmic dissipation.  However this loss in magnetic energy is balanced by a gain in thermal energy - so those terms cancel in the final energy equation.
     89$\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v}  \color{green}{ - \mathbf{E}_{\scriptscriptstyle R} \times \mathbf{B}} \color{red}{ -\mathbf{E}_{\scriptscriptstyle H} \times \mathbf{B}} \right] $
    6690
    6791
    68 == Hall+Resistive MHD ==
    69 
    70 $\mathbf{E} =  -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} +  \frac{1}{ne} \mathbf{J} \times \mathbf{B}$
    71 
    72 
    73 $\frac{\partial \rho \mathbf{v}}{\partial t} =  \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$
    74 
    75 $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v}  - \left ( \eta \nabla \times \mathbf{B} \right ) \times \mathbf{B} - \left ( \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) \times \mathbf{B} \right]$
    76 
    77 $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} \right ) - \nabla \times \left ( \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) $
    78 
    79 
    80 We can also combine the Hall and Resistive terms
    81 
    82 $\frac{\partial \rho \mathbf{v}}{\partial t} =  \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$
    83 
    84 $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v}  - \left (  \eta \nabla \times \mathbf{B} + \left ( \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) \right ) \times \mathbf{B} \right]$
    85 
    86 $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} + \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) $
    87 
    88 Or defining $\mathbf{E}' = \eta \nabla \times \mathbf{B} + \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} $
    89 
    90 $\frac{\partial \rho \mathbf{v}}{\partial t} =  \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]$
    91 
    92 $\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v}  - \mathbf{E}' \times \mathbf{B} \right]$
    93 
    94 $\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \mathbf{E}' $
    95 
    96  
    97 
    98 
    99 This along with
    100 
    101 we arrive at
    102 
    103 || Ideal MHD || $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [  \mathbf{v}\times \mathbf{B} \right ]$ ||
    104 || Resistive MHD || $ \frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [ \mathbf{v} \times \mathbf{B} - \frac{\mathbf{J}}{\sigma} \right ]$ ||
    105 || Hall MHD || $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [  \mathbf{v} \times \mathbf{B} - \frac{1}{ne} \mathbf{J} \times \mathbf{B} \right ]$ ||
    106 
    107 In addition, Poynting's theorem states that the electromagnetic energy goes as
    108 
    109 $\frac{\partial u}{\partial t} = - \nabla \cdot \mathbf{S} - \mathbf{J}\cdot \mathbf{E} $
    110 
    111 
    112 $\frac{\partial u}{\partial t} = - \nabla \cdot \left (\mathbf{E} \times \mathbf{B}\right) - \mathbf{J}\cdot \mathbf{E} $
    113 
    114 
    115 
    116 In Ideal MHD we have $\mathbf{E} = \mathbf{v} \times \mathbf{B}$
    117 
    118 
    119 
    120 
    121 
    122 
    123 Now for Hall MHD, we can write the induction equation as 
    124  
    125  $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [  \mathbf{v} \times \mathbf{B} - \mathbf{v}_\mbox{H} \times \mathbf{B} \right ]$
    126 where
    127 
    128 $ \mathbf{v}_\mbox{H} = \frac{\mathbf{J}}{ne} $
    129 
    130 Note the Hall velocity is always parallel to the current and therefore perpendicular to the field (using Ampere's law without Maxwell's addition ignoring time varying electric fields) and as a result the corresponding energy term involving $\mathbf{v_H} \cdot \mathbf{B} = 0$.
    131 
    132 
    133 Expanding just the Hall term further, we arrive at
    134 
    135  $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left [ \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right ) \times \mathbf{B} \right ]$
    136 
    137 which we can compare to the resistive mhd term
    138 
    139  $\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left [ \left ( \eta \nabla \times \mathbf{B} \right ) \right ]$
    140 
    141 So it is likewise a
     92$\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) \color{green}{- \nabla \times \mathbf{E}_{\scriptscriptstyle R}} \color{red}{- \nabla \times \mathbf{E}_{\scriptscriptstyle H}} $
    14293
    14394
     
    14596== Discretization ==
    14697
    147 For resistive MHD, we calculate $\xi = \nabla \times \mathbf{B}$ at cell edges for which each component can be calculated by differencing the 4 cell faces that share the edge.
     98For resistive MHD, we calculate $\mathbf{E} = \eta \nabla \times \mathbf{B}$ at cell edges for which each component can be calculated by differencing the 4 cell faces that share the edge. 
     99
     100Getting the curl of B at a cell edge is straight forward as it involves difference the 4 adjacent cell faces.  For example, the Z component would be given by
     101
     102$E^z_{i+1/2,j+1/2,k} = \eta_{i+1/2,j+1/2,k} \left ( \frac{B^y_{i+1,j+1/2,k} - B^y_{i,j+1/2,k}}{\Delta x} - \frac{B^x_{i+1/2,j+1,k} - B^x_{i+1/2,j,k}}{\Delta y}  \right)$
    148103
    149104
     
    162117
    163118
    164 So steps are
     119Using $b$ to represent cell centered values, $B$ to represent face centered values, we have
    165120
    166121$\xi^z_{i+1/2,j+1/2,k} = \frac{B^x_{i+1/2,j,k} + B^x_{i+1/2,j+1,k}}{2} \left ( \frac{b^z_{i+1,j,k} + b^z_{i+1,j+1,k} - b^z_{i,j,k}-b^z_{i,j+1,k}}{2 \Delta x} - \frac{B^x_{i+1/2, j, k+1} + B^x_{i+1/2,j+1,k+1}-B^x_{i+1/2,j,k-1}-B^x_{i+1/2,j+1,k-1}}{4 \Delta z} \right ) $