Generalized Equations
We start with a Generalized Ohm's law
\frac{m_e}{n e^2} \frac{\partial J}{\partial t} - \frac{1}{ne}\nabla \cdot \mathbf{P_e} = \mathbf{E} + \mathbf{v} \times \mathbf{B} - \eta\mathbf{J} - \frac{1}{ne} \mathbf{J} \times \mathbf{B}
And then under certain conditions, we can ignore various terms yielding various approximations
Resistive + Hall MHD | \mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \mathbf{J} \times \mathbf{B}
|
Resistive MHD | \mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J}
|
Ideal MHD | \mathbf{E} = - \mathbf{v}\times \mathbf{B}
|
Electromagnetic energy
We also need Poynting's theorem for the change in electro-magnetic energy
\frac{\partial e}{\partial t} = - \nabla \cdot \mathbf{S} - \mathbf{J}\cdot \mathbf{E}
which is just the net loss of energy due to diverging electromagnetic Poynting flux \mathbf{S} = \mathbf{E} \times \mathbf{B} minus the work done on the charge distribution \mathbf{J} \cdot \mathbf{E}
Induction equation
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}
Ampere's equation
(without Maxwell's correction for time varying electric field)
\mathbf{J} = \nabla \times \mathbf{B} and
Lorentz force law
\frac{\partial \rho \mathbf{v}}{\partial t}=\mathbf{J} \times \mathbf{B}
Final set of equations
\frac{\partial \rho \mathbf{v}}{\partial t} = \mathbf{J} \times \mathbf{B} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]
\frac{\partial e}{\partial t} = -\nabla \cdot \left ( \mathbf{E} \times \mathbf{B} \right) - \left ( \nabla \times \mathbf{B} \right) \cdot \mathbf{E}
\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right)
Ideal MHD
For ideal MHD we substitute
\mathbf{E} = -\mathbf{v} \times \mathbf{B}
into the equations above and after some vector calculus, manage to write momentum and energy as a total divergence (and the field as a curl)
\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]
\frac{\partial e}{\partial t} = \nabla \cdot \left ( \left (\mathbf{v} \times \mathbf{B} \right ) \times \mathbf{B} \right) + \left ( \nabla \times \mathbf{B} \right) \cdot \left ( \mathbf{v} \times \mathbf{B} \right) = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} \right]
\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right)
Resistive MHD
\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} = -\mathbf{v} \times \mathbf{E} + \eta \nabla \times \mathbf{B}
into the equations above and after some vector calculus, manage to write momentum and energy as a total divergence (and the field as a curl)
\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]
\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \left ( \eta \nabla \times \mathbf{B} \right ) \times \mathbf{B} \right]
\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} \right )
Note the energy equation is missing the additional \mathbf{J} \cdot \mathbf{\eta \mathbf{J}} term which would correspond to the loss in magnetic energy due to ohmic dissipation. However this loss in magnetic energy is balanced by a gain in thermal energy - so those terms cancel in the final energy equation.
Hall+Resistive MHD
\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \mathbf{J} + \frac{1}{ne} \mathbf{J} \times \mathbf{B}
\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]
\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \left ( \eta \nabla \times \mathbf{B} \right ) \times \mathbf{B} - \left ( \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) \times \mathbf{B} \right]
\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} \right ) - \nabla \times \left ( \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right)
We can also combine the Hall and Resistive terms
\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]
\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \left ( \eta \nabla \times \mathbf{B} + \left ( \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right) \right ) \times \mathbf{B} \right]
\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \left ( \eta \nabla \times \mathbf{B} + \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B} \right)
Or defining \mathbf{E}' = \eta \nabla \times \mathbf{B} + \frac{1}{ne} \left( \nabla \times \mathbf{B} \right) \times \mathbf{B}
\frac{\partial \rho \mathbf{v}}{\partial t} = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} = \nabla \cdot \left [ \mathbf{BB}-\frac{B^2}{2} \mathbf{I} \right ]
\frac{\partial e}{\partial t} = \nabla \cdot \left [ \mathbf{B} \left ( \mathbf{B} \cdot \mathbf{v} \right) - \frac{B^2}{2} \mathbf{v} - \mathbf{E}' \times \mathbf{B} \right]
\frac{\partial B}{\partial t} = \nabla \times \left ( \mathbf{v} \times \mathbf{B} \right) - \nabla \times \mathbf{E}'
This along with
we arrive at
Ideal MHD | \frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [ \mathbf{v}\times \mathbf{B} \right ]
|
Resistive MHD | \frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [ \mathbf{v} \times \mathbf{B} - \frac{\mathbf{J}}{\sigma} \right ]
|
Hall MHD | \frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [ \mathbf{v} \times \mathbf{B} - \frac{1}{ne} \mathbf{J} \times \mathbf{B} \right ]
|
In addition, Poynting's theorem states that the electromagnetic energy goes as
\frac{\partial u}{\partial t} = - \nabla \cdot \mathbf{S} - \mathbf{J}\cdot \mathbf{E}
\frac{\partial u}{\partial t} = - \nabla \cdot \left (\mathbf{E} \times \mathbf{B}\right) - \mathbf{J}\cdot \mathbf{E}
In Ideal MHD we have \mathbf{E} = \mathbf{v} \times \mathbf{B}
Now for Hall MHD, we can write the induction equation as
\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \left [ \mathbf{v} \times \mathbf{B} - \mathbf{v}_\mbox{H} \times \mathbf{B} \right ]
where
\mathbf{v}_\mbox{H} = \frac{\mathbf{J}}{ne}
Note the Hall velocity is always parallel to the current and therefore perpendicular to the field (using Ampere's law without Maxwell's addition ignoring time varying electric fields) and as a result the corresponding energy term involving \mathbf{v_H} \cdot \mathbf{B} = 0.
Expanding just the Hall term further, we arrive at
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left [ \frac{1}{ne} \left ( \nabla \times \mathbf{B} \right ) \times \mathbf{B} \right ]
which we can compare to the resistive mhd term
\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \left [ \left ( \eta \nabla \times \mathbf{B} \right ) \right ]
So it is likewise a
Discretization
For resistive MHD, we calculate \xi = \nabla \times \mathbf{B} at cell edges for which each component can be calculated by differencing the 4 cell faces that share the edge.
For Hall MHD we need to calculate \xi = \left (\nabla \times \mathbf{B} \right) \times \mathbf{B} along with n at cell edges.
\xi_i = B_k d_l B_m \epsilon_{ijk} \epsilon_{jlm} = B_k d_l B_m \left(\delta_{kl} \delta_{im} - \delta_{km} \delta_{il} \right )
So we have
\xi_z = B_x \left ( d_x B_z - d_z B_x \right) + B_y \left ( d_y B_z - d_z B_y \right)
So we need
- edge centered estimates of the perpendicular fields (which can be found by averaging the two adjacent faces)
- transverse gradients of the parallel field (which can be found by differencing adjacent face centered averages of the parallel field (found by averaging the adjacent cell centered fields)
- parallel gradients of the transverse field
So steps are
\xi^z_{i+1/2,j+1/2,k} = \frac{B^x_{i+1/2,j,k} + B^x_{i+1/2,j+1,k}}{2} \left ( \frac{b^z_{i+1,j,k} + b^z_{i+1,j+1,k} - b^z_{i,j,k}-b^z_{i,j+1,k}}{2 \Delta x} - \frac{B^x_{i+1/2, j, k+1} + B^x_{i+1/2,j+1,k+1}-B^x_{i+1/2,j,k-1}-B^x_{i+1/2,j+1,k-1}}{4 \Delta z} \right )
+\frac{B^y_{i,j+1/2,k} + B^y_{i+1,j+1/2,k}}{2} \left ( \frac{b^z_{i,j+1,k} + b^z_{i+1,j+1,k} - b^z_{i,j,k}-b^z_{i+1,j,k}}{2 \Delta y} - \frac{B^y_{i, j+1/2, k+1} + B^y_{i+1,j+1/2,k+1}-B^y_{i,j+1/2,k-1}-B^y_{i+1,j+1/2,k-1}}{4 \Delta z} \right )
Now if we represent edge centered perpendicular B fields
\beta^x_{i+1/2,j+1/2,k} = \frac{B^x_{i+1/2,j,k}+B^x_{i+1/2,j+1,k}}{2}
and face centered parallel fields
\alpha^z_{i,j+1/2,k} = \frac{b^z_{i,j,k}+b^z_{i,j+1,k}}{2}
this simplifies to
\xi^z_{i+1/2,j+1/2,k} = \beta^x_{i+1/2,j+1/2,k} \left ( \frac{\alpha^z_{i+1,j+1/2,k} - \alpha^z_{i,j+1/2,k}}{\Delta x} - \frac{\beta^x_{i+1/2, j+1/2, k+1} -\beta^x_{i+1/2,j+1/2,k-1}}{2 \Delta z} \right )
+\beta^y_{i+1/2,j+1/2,k} \left ( \frac{\alpha^z_{i+1/2,j+1,k} - \alpha^z_{i+1/2,j,k}}{\Delta x} - \frac{\beta^y_{i+1/2, j+1/2, k+1} -\beta^y_{i+1/2,j+1/2,k-1}}{2 \Delta z} \right )
So to calculate 'z' edges we need adjacent face centered z fields and edge centered transverse fields
These fields won't be used for any of the other directional updates - so can be discarded after each dimension