Changes between Version 1 and Version 2 of u/johannjc/scratchpad2
- Timestamp:
- 09/29/15 11:47:49 (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad2
v1 v2 19 19 which can be expanded as 20 20 21 $n \chi_\perp \partial_i \partial_i T + n \left ( \partial_B \chi_\perp \right ) \left (\partial_i B \right ) \left ( \partial_i T \right ) + 2 \chi_\perp \left ( \partial_i n \right ) \left (\partial_i T \right ) $21 $n \chi_\perp \partial_i \partial_i T + n \left ( \partial_B \chi_\perp \right ) \left (\partial_i B \right ) \left ( \partial_i T \right ) + 2 \chi_\perp \left ( \partial_i n \right ) \left (\partial_i T \right ) + n \left (\partial_T \chi_\perp \right )\left (\partial_i T \right ) \left ( \partial_i T \right )$ 22 22 23 23 … … 45 45 Now if we group terms in the expansion 46 46 47 $ A = B_i \partial_i T + C_{ij} \partial_i \partial_j T + D_{ij} \left ( \partial_i T \right ) \left ( \partial_j T \right ) + E \partial_i \partial_i T $47 $ A = B_i \partial_i T + C_{ij} \partial_i \partial_j T + D_{ij} \left ( \partial_i T \right ) \left ( \partial_j T \right ) + E \partial_i \partial_i T + F \left ( \partial_i T \right ) \left ( \partial_i T \right )$ 48 48 49 49 we can work out coefficients for the various stencil terms (note $D_{ij}+D_{ji} = 2D_{ij}$ since $D_{ij}$ is symmetric) … … 52 52 $\alpha_0 = -\frac{1}{\Delta t} -\frac{2C_{ii}}{\Delta x^2} - \frac{2\delta_{ii}E}{\Delta x^2}$ 53 53 54 $\alpha_{\pm \hat{i}} = \pm\frac{B_i}{2\Delta x} + \frac{C_{ii}}{\Delta x^2} \pm \frac{2D_{ij} \left ( T'_{\hat{j}} - T'_{-\hat{j}} \right )}{4 \Delta x^2} + \frac{E}{\Delta x^2} $54 $\alpha_{\pm \hat{i}} = \pm\frac{B_i}{2\Delta x} + \frac{C_{ii}}{\Delta x^2} \pm \frac{2D_{ij} \left ( T'_{\hat{j}} - T'_{-\hat{j}} \right )}{4 \Delta x^2} + \frac{E}{\Delta x^2} \pm \frac{2F\left ( T'_{\hat{i}} - T'_{-\hat{i}} \right )}{4 \Delta x^2}$ 55 55 56 56 $\alpha_{\pm \hat{i} \pm \hat{j}} = \pm \pm \frac{C_{ij}}{4\Delta x^2}\left ( 1 - \delta_{ij} \right )$ 57 57 58 and the right hand side 58 and the right hand side is 59 59 60 $A = -\frac{T'}{\delta t} + \frac{D_{ij}}{4 \Delta x^2}\left ( \partial_i T' \right ) \left ( \partial_j T' \right )$ 60 $A = -\frac{T'}{\delta t} + \frac{D_{ij}}{4 \Delta x^2}\left ( \partial_i T' \right ) \left ( \partial_j T' \right ) + \frac{F}{4\Delta x^2} \left (\partial_i T' \right ) \left (\partial_i T' \right ) $ 61 62 Now for the fun part... 63 {{{ 64 #!latex 65 $ 66 \begin{array}{rl} 67 B_i = & \left ( \partial_j n b_j \right ) \left (\chi_\parallel - \chi_\perp \right ) b_i - n b_j \left ( \partial_n \chi_\perp \right ) \left ( \partial_j n \right ) b_i - n b_j \left (\partial_B \chi_\perp \right ) \left ( \partial_j B \right ) b_i \\ 68 & + \left (\partial_i n \right ) \chi_\perp + n \left ( \partial_n \chi_\perp \right ) \left (\partial_i n \right ) + n \left ( \partial_B \chi_\perp \right) \left ( \partial_i B \right ) \\ 69 C_{ij} = & n b_j \left ( \chi_\parallel - \chi_\perp \right ) b_i \\ 70 D_{ij} = & n b_j \partial_T \left ( \chi_\parallel - \chi_\perp \right ) b_i \\ 71 E = & n \chi_\perp \\ 72 F = & n \partial_T \chi_\perp \\ 73 \end{array} 74 $ 75 }}} 76 77 Note that if we take the coefficients in $B_i \cdot b_i$ all of the perpendicular terms drop out - except for one involving changes in the direction of b $-n \left (\partial_i b_i \right ) \chi_\perp $