Changes between Version 1 and Version 2 of u/johannjc/scratchpad2


Ignore:
Timestamp:
09/29/15 11:47:49 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad2

    v1 v2  
    1919which can be expanded as
    2020
    21 $n \chi_\perp \partial_i \partial_i T + n \left ( \partial_B \chi_\perp \right ) \left (\partial_i B \right ) \left ( \partial_i T \right ) + 2 \chi_\perp \left ( \partial_i n \right ) \left (\partial_i T \right )$
     21$n \chi_\perp \partial_i \partial_i T + n \left ( \partial_B \chi_\perp \right ) \left (\partial_i B \right ) \left ( \partial_i T \right ) + 2 \chi_\perp \left ( \partial_i n \right ) \left (\partial_i T \right ) + n \left (\partial_T \chi_\perp \right )\left (\partial_i T \right ) \left ( \partial_i T \right )$
    2222
    2323
     
    4545Now if we group terms in the expansion
    4646
    47 $ A = B_i \partial_i T + C_{ij} \partial_i \partial_j T + D_{ij} \left ( \partial_i T \right ) \left ( \partial_j T \right ) + E \partial_i \partial_i T$
     47$ A = B_i \partial_i T + C_{ij} \partial_i \partial_j T + D_{ij} \left ( \partial_i T \right ) \left ( \partial_j T \right ) + E \partial_i \partial_i T + F \left ( \partial_i T \right ) \left ( \partial_i T \right )$
    4848
    4949we can work out coefficients for the various stencil terms (note $D_{ij}+D_{ji} = 2D_{ij}$ since $D_{ij}$ is symmetric)
     
    5252$\alpha_0 = -\frac{1}{\Delta t} -\frac{2C_{ii}}{\Delta x^2} - \frac{2\delta_{ii}E}{\Delta x^2}$
    5353
    54 $\alpha_{\pm \hat{i}} = \pm\frac{B_i}{2\Delta x} + \frac{C_{ii}}{\Delta x^2} \pm \frac{2D_{ij} \left ( T'_{\hat{j}} - T'_{-\hat{j}} \right )}{4 \Delta x^2} + \frac{E}{\Delta x^2} $
     54$\alpha_{\pm \hat{i}} = \pm\frac{B_i}{2\Delta x} + \frac{C_{ii}}{\Delta x^2} \pm \frac{2D_{ij} \left ( T'_{\hat{j}} - T'_{-\hat{j}} \right )}{4 \Delta x^2} + \frac{E}{\Delta x^2} \pm \frac{2F\left ( T'_{\hat{i}} - T'_{-\hat{i}} \right )}{4 \Delta x^2}$
    5555
    5656$\alpha_{\pm \hat{i} \pm \hat{j}} = \pm \pm \frac{C_{ij}}{4\Delta x^2}\left ( 1 - \delta_{ij} \right )$
    5757
    58 and the right hand side
     58and the right hand side is
    5959
    60 $A = -\frac{T'}{\delta t} + \frac{D_{ij}}{4 \Delta x^2}\left ( \partial_i T' \right ) \left ( \partial_j T' \right )$
     60$A = -\frac{T'}{\delta t} + \frac{D_{ij}}{4 \Delta x^2}\left ( \partial_i T' \right ) \left ( \partial_j T' \right ) + \frac{F}{4\Delta x^2} \left (\partial_i T' \right ) \left (\partial_i T' \right ) $
     61
     62Now for the fun part...
     63{{{
     64#!latex
     65$
     66\begin{array}{rl}
     67B_i  = &   \left ( \partial_j n b_j \right ) \left (\chi_\parallel - \chi_\perp \right ) b_i - n b_j \left ( \partial_n \chi_\perp \right ) \left ( \partial_j n \right ) b_i - n b_j \left (\partial_B \chi_\perp \right ) \left ( \partial_j B \right ) b_i  \\
     68 & + \left (\partial_i n \right ) \chi_\perp + n \left ( \partial_n \chi_\perp \right ) \left (\partial_i n \right ) + n \left ( \partial_B \chi_\perp \right) \left ( \partial_i B \right ) \\
     69C_{ij} = & n b_j \left ( \chi_\parallel - \chi_\perp \right ) b_i \\
     70D_{ij} = & n b_j \partial_T \left ( \chi_\parallel - \chi_\perp \right ) b_i \\
     71E = & n \chi_\perp \\
     72F = & n \partial_T \chi_\perp  \\
     73\end{array}
     74$
     75}}}
     76
     77Note that if we take the coefficients in $B_i \cdot b_i$ all of the perpendicular terms drop out - except for one involving changes in the direction of b $-n \left (\partial_i b_i \right ) \chi_\perp $