Changes between Version 9 and Version 10 of u/johannjc/scratchpad4


Ignore:
Timestamp:
09/30/15 17:18:47 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad4

    v9 v10  
    5858
    5959we get expressions for
     60$\phi' = \frac{\left ( \phi-\psi\lambda \right )}{\psi \left (\lambda+1 \right )} $
    6061
    61 $B_j =  \frac{\kappa_\parallel \left ( \phi-\psi\lambda \right )}{\lambda+1} \partial_i n b_i b_j $
     62$B_j =  \phi' C_j $   
    6263
    6364$C_j =   \kappa_\parallel \psi \partial_i n b_i b_j $
    6465
    65 $D_{ij}=\frac{\kappa_\parallel \left ( \phi-\psi\lambda \right )}{\lambda+1} n b_i b_j $
     66$D_{ij}=\phi'E_{ij}$
    6667
    6768$E_{ij} =   \kappa_\parallel \psi  n b_i b_j $
     
    8586where
    8687
    87 $\alpha_0 = -\frac{1}{\Delta t} -\frac{2E_{jj}}{\Delta x^2}T_0^\lambda$
     88$\alpha_0 = -\frac{2E_{jj}\Delta t}{\Delta x^2}T_0^\lambda$
    8889
    89 $\alpha_{\pm j} = \pm C_jT^\lambda_{\pm \hat{j}} + \frac{E_{jj}}{\Delta x^2}T_{\pm \hat{j}}^\lambda$
     90$\alpha_{\pm j} = \pm \frac{C_j \Delta t}{2 \Delta x} + \frac{E_{jj}\Delta t}{\Delta x^2}$
    9091
    91 $\alpha_{\pm i, \pm j} = \pm \pm \frac{E_{ij}}{4 \Delta x^2}T^\lambda_{\pm \hat{i} \pm \hat{j}}$
    92 
    93 $\beta = -\frac{T_0}{\Delta t} \pm \frac{B_j}{2 \Delta x} T^{\lambda+1}_{\pm \hat{j}} \pm \pm \frac{D_{ij}}{4 \Delta x^2} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}}\left ( 1 - \delta_{ij} \right )  + \frac{D_{jj}}{\Delta x^2} T^{\lambda+1}_{\pm \hat{j}} - 2 \frac{D_{jj}}{\Delta x^2}T^{\lambda+1}_0$
     92$\alpha_{\pm i, \pm j} = \pm \pm \frac{E_{ij}\Delta t}{4 \Delta x^2}$