Changes between Version 10 and Version 11 of u/johannjc/scratchpad4


Ignore:
Timestamp:
09/30/15 17:32:39 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad4

    v10 v11  
    5858
    5959we get expressions for
     60
    6061$\phi' = \frac{\left ( \phi-\psi\lambda \right )}{\psi \left (\lambda+1 \right )} $
    6162
     
    8283We can also write the equation as
    8384
    84 $-T_0 - \alpha_0 T^{\lambda+1}_0 - \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} - \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = -T'_0 + \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}}$
     85
     86$-T_0 -  \phi' \left [ \alpha_0 T^{\lambda+1}_0 -  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} - \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $
     87$-T'_0 + \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}}$
    8588
    8689where
    8790
    88 $\alpha_0 = -\frac{2E_{jj}\Delta t}{\Delta x^2}T_0^\lambda$
     91$\alpha_0 = -\frac{2E_{jj}\Delta t}{\Delta x^2}$
    8992
    9093$\alpha_{\pm j} = \pm \frac{C_j \Delta t}{2 \Delta x} + \frac{E_{jj}\Delta t}{\Delta x^2}$