120 | | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{-n \kappa_\perp}{B^2 \left (\Lambda+1\right )} \left ( \hat{b} \cdot \nabla T_*^{\Lambda+1} \right ) - \frac{-n \kappa_\perp}{B^2 \left (\Lambda+1\right )}\nabla^2 T_*^{\Lambda+1} \right ]$ |
| 120 | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{-n \kappa_\perp}{B^2 \left (\Lambda+1\right )} \left ( \hat{b} \cdot \nabla T_*^{\Lambda+1} \right ) + \frac{n \kappa_\perp}{B^2 \left (\Lambda+1\right )}\nabla^2 T_*^{\Lambda+1} \right ]$ |
| 121 | |
| 122 | And performing a Taylor expansion gives |
| 123 | |
| 124 | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ -n \hat{b} \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \left ( \hat{b} \cdot \nabla \left ( -\Lambda T^{\Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda}T_{*} \right ) \right ) + n \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \nabla^2 \left ( - \Lambda T^{ \Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda} T_{*} \right ) \right ] $ |