Changes between Version 14 and Version 15 of u/johannjc/scratchpad4
- Timestamp:
- 10/01/15 07:32:51 (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad4
v14 v15 118 118 Now for the perpendicular term, we have 119 119 120 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{-n \kappa_\perp}{B^2 \left (\Lambda+1\right )} \left ( \hat{b} \cdot \nabla T_*^{\Lambda+1} \right ) + \frac{n \kappa_\perp}{B^2 \left (\Lambda+1\right )}\nabla^2 T_*^{\Lambda+1} \right ]$120 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{-n \kappa_\perp}{B^2 \left (\Lambda+1\right )} \left ( \hat{b} \cdot \nabla T_*^{\Lambda+1} \right ) + n \frac{n \kappa_\perp}{B^2 \left (\Lambda+1\right )}\nabla^2 T_*^{\Lambda+1} \right ]$ 121 121 122 122 And performing a Taylor expansion gives