Changes between Version 15 and Version 16 of u/johannjc/scratchpad4


Ignore:
Timestamp:
10/01/15 07:57:16 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad4

    v15 v16  
    118118Now for the perpendicular term, we have
    119119
    120  $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{-n \kappa_\perp}{B^2 \left (\Lambda+1\right )} \left ( \hat{b} \cdot \nabla T_*^{\Lambda+1} \right ) +  n \frac{n \kappa_\perp}{B^2 \left (\Lambda+1\right )}\nabla^2 T_*^{\Lambda+1} \right ]$
     120 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \frac{-n \kappa_\perp}{B^2 \left (\Lambda+1\right )} \left ( \hat{b} \cdot \nabla T_*^{\Lambda+1} \right ) +  n \frac{n \kappa_\perp}{B^2 \left (\Lambda+1\right )}\nabla T_*^{\Lambda+1} \right ]$
    121121
    122122And performing a Taylor expansion gives
    123123
    124 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ -n \hat{b} \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \left ( \hat{b} \cdot \nabla \left ( -\Lambda T^{\Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda}T_{*} \right ) \right ) +  n \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \nabla^2 \left ( - \Lambda T^{ \Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda} T_{*} \right )  \right ] $
     124$\frac{\partial T}{\partial t} = \nabla \cdot \left [ -n \hat{b} \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \left ( \hat{b} \cdot \nabla \left ( -\Lambda T^{\Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda}T_{*} \right ) \right ) +  n \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \nabla \left ( - \Lambda T^{ \Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda} T_{*} \right )  \right ] $
     125
     126And in Einstein notation gives
     127
     128$\partial_t T = - \partial_i n b_i \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \left ( b_j  \partial_j \left ( -\Lambda T^{\Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda}T_{*} \right ) \right ) +  \partial_i n \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) }   \partial_i \left ( - \Lambda T^{ \Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda} T_{*} \right )  $
     129
     130
     131The first term is very similar to the parallel case... 
     132
     133$\phi' = \frac{\phi-\psi \Lambda}{\psi \left ( \Lambda + 1 \right )}$
     134
     135$B_j =  \phi' C_j $   
     136
     137$C_j =   -\kappa_\perp \psi \partial_i n^2 B^{-2} b_i b_j $
     138
     139$D_{ij}=\phi'E_{ij}$
     140
     141$E_{ij} =   -\kappa_\perp \psi  n^2 B^{-2} b_i b_j $