124 | | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ -n \hat{b} \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \left ( \hat{b} \cdot \nabla \left ( -\Lambda T^{\Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda}T_{*} \right ) \right ) + n \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \nabla^2 \left ( - \Lambda T^{ \Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda} T_{*} \right ) \right ] $ |
| 124 | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ -n \hat{b} \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \left ( \hat{b} \cdot \nabla \left ( -\Lambda T^{\Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda}T_{*} \right ) \right ) + n \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \nabla \left ( - \Lambda T^{ \Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda} T_{*} \right ) \right ] $ |
| 125 | |
| 126 | And in Einstein notation gives |
| 127 | |
| 128 | $\partial_t T = - \partial_i n b_i \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \left ( b_j \partial_j \left ( -\Lambda T^{\Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda}T_{*} \right ) \right ) + \partial_i n \frac{n \kappa_\perp}{B^2 \left ( \Lambda+1 \right ) } \partial_i \left ( - \Lambda T^{ \Lambda+1} + \left ( \Lambda + 1 \right ) T^{\Lambda} T_{*} \right ) $ |
| 129 | |
| 130 | |
| 131 | The first term is very similar to the parallel case... |
| 132 | |
| 133 | $\phi' = \frac{\phi-\psi \Lambda}{\psi \left ( \Lambda + 1 \right )}$ |
| 134 | |
| 135 | $B_j = \phi' C_j $ |
| 136 | |
| 137 | $C_j = -\kappa_\perp \psi \partial_i n^2 B^{-2} b_i b_j $ |
| 138 | |
| 139 | $D_{ij}=\phi'E_{ij}$ |
| 140 | |
| 141 | $E_{ij} = -\kappa_\perp \psi n^2 B^{-2} b_i b_j $ |