Changes between Version 2 and Version 3 of u/johannjc/scratchpad4


Ignore:
Timestamp:
09/30/15 16:42:07 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad4

    v2 v3  
    5555Now if we write the equation as
    5656
    57 $\partial_t T = B_i \partial_j T^{\lambda+1} + C_j \partial_j T^\lambda T' + D_{ij} \partial_i\partial_j T^{\lambda+1} + E_{ij} \partial_i \partial_j T^\lambda T'$
     57$\partial_t T = B_j \partial_j T^{\lambda+1} + C_j \partial_j T^\lambda T' + D_{ij} \partial_i\partial_j T^{\lambda+1} + E_{ij} \partial_i \partial_j T^\lambda T'$
    5858
    5959we get expressions for
     60
     61$A = \frac{1}{\Delta t}$
    6062
    6163$B_j =  \frac{\kappa_\parallel \left ( \phi-\psi\lambda \right )}{\lambda+1} \partial_i n b_i b_j $
     
    6971We then need expressions for
    7072
    71 $ \partial_t T = \frac{T'_0 - T_0}{\Delta t}$
     73$ \partial_t T = A \left ( T'_0 - T_0 \right )$
     74
    7275$ \partial_j T^{\lambda+1} = \frac{T^{\lambda+1}_{\hat{j}} - T^{\lambda+1}_{-\hat{j}}}{2 \Delta x}$
    7376
     
    8083We can also write the equation as
    8184
    82 $\alpha_0 T'_0 + \displaystyle \sum_{\pm i} \alpha_{\pm i} T'_{\pm \hat{i}} + \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T'_{\pm \hat{i} \pm \hat{j}} = \beta$
     85$\beta = \alpha_0 T'_0 + \displaystyle \sum_{\pm i} \alpha_{\pm i} T'_{\pm \hat{i}} + \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T'_{\pm \hat{i} \pm \hat{j}}$
    8386
    8487and then work out the coefficients for the matrix equation
    8588
     89$\alpha_0 = -A -2E_{ii}T_0^\lambda = n \kappa_\parallel \psi$
     90
     91$\alpha_{\pm i} = \pm C_iT^\lambda_{\pm hat{i}} + E_{ii}T_{\pm \hat{i}}^\lambda$
     92