Changes between Version 6 and Version 7 of u/johannjc/scratchpad4


Ignore:
Timestamp:
09/30/15 17:03:58 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad4

    v6 v7  
    5959we get expressions for
    6060
    61 $A = \frac{1}{\Delta t}$
    62 
    6361$B_j =  \frac{\kappa_\parallel \left ( \phi-\psi\lambda \right )}{\lambda+1} \partial_i n b_i b_j $
    6462
     
    7169We then need expressions for
    7270
    73 $ \partial_t T = A \left ( T'_0 - T_0 \right )$
     71$ \partial_t T = \frac{ T'_0 - T_0}{\Delta t}$
    7472
    7573$ \partial_j T^{\lambda+1} = \frac{T^{\lambda+1}_{\hat{j}} - T^{\lambda+1}_{-\hat{j}}}{2 \Delta x}$
     
    9189$\alpha_{\pm j} = \pm C_jT^\lambda_{\pm \hat{j}} + \frac{E_{jj}}{\Delta x^2}T_{\pm \hat{j}}^\lambda$
    9290
    93 $\alpha_{\pm i \pm j} = \pm \pm \frac{E_{ij}}{4 \Delta x^2}T^\lambda_{\pm \hat{i} \pm \hat{j}}$
     91$\alpha_{\pm i, \pm j} = \pm \pm \frac{E_{ij}}{4 \Delta x^2}T^\lambda_{\pm \hat{i} \pm \hat{j}}$
    9492
     93$\beta = -\frac{T_0}{\Delta t} \pm \frac{B_j}{2 \Delta x} T^{\lambda+1}_{\pm \hat{j}} \pm \pm \frac{D_{ij}}{4 \Delta x^2} T^{lambda+1}_{\pm \hat{i} \pm \hat{j}}\left ( 1 - \delta_{ij} \right )  + \frac{D_{jj}}{\Delta x^2} T^{lambda+1}_{\pm \hat{j}} - 2 \frac{D_{jj}}{\Delta x^2}T^{\lambda+1}_0$