Changes between Version 12 and Version 13 of u/johannjc/scratchpad5


Ignore:
Timestamp:
10/02/15 13:24:11 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad5

    v12 v13  
    22The anisotropic conduction equation looks like
    33
    4 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \chi_\parallel - \chi_\perp \right ) \left ( \hat{b} \cdot \nabla T \right ) + n \chi_\perp \nabla T \right ]$
     4$\rho c_v\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \chi_\parallel - \chi_\perp \right ) \left ( \hat{b} \cdot \nabla T \right ) + n \chi_\perp \nabla T \right ]$
    55
    66however, the conduction coefficients have a Temperature dependence.
     
    1414So we can rewrite the equations as
    1515
    16 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \nabla T \right ]$
     16$\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \nabla T \right ]$
    1717
    1818or
    1919
    20 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$
     20$\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$
    2121
    2222== Einstein simplification ==
     
    2424or in Einstein notation
    2525
    26 $\partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j  T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \partial_i T^{\lambda_\perp+1} \right ]$
     26$\rho c_v \partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j  T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \partial_i T^{\lambda_\perp+1} \right ]$
    2727
    2828or
    2929
    30 $\partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j  T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \delta_{ij} \partial_j T^{\lambda_\perp+1} \right ]$
     30$\rho c_v  \partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j  T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \delta_{ij} \partial_j T^{\lambda_\perp+1} \right ]$
    3131
    3232or
    3333
    34 $\partial_t T = \partial_i n b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} +   \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\perp+1} $
     34$\rho c_v \partial_t T = \partial_i n b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} +   \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\perp+1} $
    3535
    3636or
    3737
    38 $\partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1}  \partial_i n b_i  b_j \partial_j T^{\lambda_\parallel+1} +   \frac{\kappa_\perp}{\left ( \lambda_\perp + 1\right )} \partial_i n^2 B^{-2} \left ( \delta_{ij} - b_i b_j \right )  \partial_j T^{\lambda_\perp +1} $
     38$\rho c_v  \partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1}  \partial_i n b_i  b_j \partial_j T^{\lambda_\parallel+1} +   \frac{\kappa_\perp}{\left ( \lambda_\perp + 1\right )} \partial_i n^2 B^{-2} \left ( \delta_{ij} - b_i b_j \right )  \partial_j T^{\lambda_\perp +1} $
    3939
    4040== Implicitization ==
     
    4646where the $\parallel$ or $\perp$ subscript on $A$, $B_{ij}$, and $lambda$ is implied. 
    4747
    48 $A_\parallel = \frac{\kappa_\parallel}{\lambda_\parallel + 1}$ and $A_\perp = \frac{\kappa_\perp}{\lambda_\perp + 1}$
     48$A_\parallel = \frac{\kappa_\parallel}{\rho c_v  \left ( \lambda_\parallel + 1\right ) }$ and $A_\perp = \frac{\kappa_\perp}{\rho c_v  \left (\lambda_\perp + 1 \right )}$
    4949
    5050and $B_{\parallel, ij} = n b_i b_j$ and $B_{\perp, ij} = n^2 B^-2 b_i b_j \left ( 1 - \delta_{ij} \right )$
     
    137137||$\alpha_{\pm i, \pm j}$ || $ \pm \pm \frac{F_{ij}\Delta t}{4 \Delta x^2}$ ||
    138138
     139
     140
     141=== Isotropic Case ===
     142
     143For the Isotropic Case, the diffusion equation looks like