| 144 | |
| 145 | $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \kappa T^\lambda \nabla T$ |
| 146 | |
| 147 | or |
| 148 | |
| 149 | $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \frac{\kappa}{\lambda+1} \nabla T^{\lambda+1}$ |
| 150 | |
| 151 | or in Einstein notation |
| 152 | |
| 153 | $\rho c_v \partial_t T = \partial_i \frac{\kappa}{\lambda+1} \partial_i T^{\lambda+1}$ |
| 154 | |
| 155 | which we can rewrite as |
| 156 | |
| 157 | $\partial_t T = A \partial_i B \partial i T^{\lambda+1}$ |
| 158 | |
| 159 | $\partial_t T = A \partial_i B \delta_{ij} \partial j T^{\lambda+1}$ |
| 160 | |
| 161 | This is the exact same form as before, but now |
| 162 | |
| 163 | $B_{ij}=\kappa \delta{ij}$ |