Changes between Version 16 and Version 17 of u/johannjc/scratchpad5


Ignore:
Timestamp:
10/02/15 17:18:36 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad5

    v16 v17  
    166166
    167167$B_{ij}=\kappa \delta{ij}$
     168
     169is diagonal so the cross terms vanish
     170
     171and $\alpha_{\pm i, \pm j} = 0$
     172
     173and it is independent of direction, so it is just a scalar.
     174
     175|| $E_j$ || $A \left ( \partial_j \kappa \right )$ ||
     176|| $F$ || $A \kappa$ ||
     177||$\alpha_0 $ ||$ -\frac{2F\delta_{ii} \Delta t}{\Delta x^2}$ ||
     178||$\alpha_{\pm j}$ || $ \pm \frac{E_j \Delta t}{2 \Delta x} +  \frac{F\Delta t}{\Delta x^2}$ ||
     179||$\alpha_{\pm i, \pm j}$ || $ 0$ ||
     180
     181Also if $\kappa$ is a constant, the $E_j$ terms drop out.
     182
     183
     184=== Explicit Case ===
     185
     186For the Explicit case, we just set $\phi = 0$ which sets $D = 0$ and $C=1$ and we have
     187
     188$T_0 -  \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 +  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} +  \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = T'_0$