| 168 | |
| 169 | is diagonal so the cross terms vanish |
| 170 | |
| 171 | and $\alpha_{\pm i, \pm j} = 0$ |
| 172 | |
| 173 | and it is independent of direction, so it is just a scalar. |
| 174 | |
| 175 | || $E_j$ || $A \left ( \partial_j \kappa \right )$ || |
| 176 | || $F$ || $A \kappa$ || |
| 177 | ||$\alpha_0 $ ||$ -\frac{2F\delta_{ii} \Delta t}{\Delta x^2}$ || |
| 178 | ||$\alpha_{\pm j}$ || $ \pm \frac{E_j \Delta t}{2 \Delta x} + \frac{F\Delta t}{\Delta x^2}$ || |
| 179 | ||$\alpha_{\pm i, \pm j}$ || $ 0$ || |
| 180 | |
| 181 | Also if $\kappa$ is a constant, the $E_j$ terms drop out. |
| 182 | |
| 183 | |
| 184 | === Explicit Case === |
| 185 | |
| 186 | For the Explicit case, we just set $\phi = 0$ which sets $D = 0$ and $C=1$ and we have |
| 187 | |
| 188 | $T_0 - \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = T'_0$ |