Changes between Version 17 and Version 18 of u/johannjc/scratchpad5


Ignore:
Timestamp:
10/02/15 17:20:32 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad5

    v17 v18  
    113113
    114114
    115 $T_0 -  \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 +  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} +  \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $
    116 $T'_0 + \displaystyle \sum_{\parallel, \perp} D \left [  \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$
     115$T_0 +  \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 +  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} +  \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $
     116$T'_0 - \displaystyle \sum_{\parallel, \perp} D \left [  \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$
    117117
    118118where
     
    186186For the Explicit case, we just set $\phi = 0$ which sets $D = 0$ and $C=1$ and we have
    187187
    188 $T_0 -  \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 +  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} +  \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = T'_0$
     188$T_0 +  \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 +  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} +  \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = T'_0$