Changes between Version 19 and Version 20 of u/johannjc/scratchpad5
- Timestamp:
- 10/06/15 17:55:34 (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad5
v19 v20 10 10 however, the conduction coefficients have a Temperature dependence. 11 11 12 $\chi_\parallel = \kappa_\parallel T^{5/2} $12 $\chi_\parallel = \kappa_\parallel T^{5/2} n^{-1}$ 13 13 14 14 $\chi_\perp = \kappa_\perp \frac{n}{B^2 T^{1/2}}$ … … 18 18 So we can rewrite the equations as 19 19 20 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n\kappa_\perp}{B^2} T^{\lambda_\perp} \nabla T \right ]$21 22 or 23 24 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{n\kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$20 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n^2 \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n^2 \kappa_\perp}{B^2} T^{\lambda_\perp} \nabla T \right ]$ 21 22 or 23 24 $\rho c_v \frac{\partial T}{\partial t} = \nabla \cdot \left [ \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$ 25 25 26 26 == Einstein simplification == … … 28 28 or in Einstein notation 29 29 30 $\rho c_v \partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j T^{\lambda_\perp + 1} \right ) \right ) + \frac{n\kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \partial_i T^{\lambda_\perp+1} \right ]$31 32 or 33 34 $\rho c_v \partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j T^{\lambda_\perp + 1} \right ) \right ) + \frac{n\kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \delta_{ij} \partial_j T^{\lambda_\perp+1} \right ]$35 36 or 37 38 $\rho c_v \partial_t T = \partial_i n b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} + \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \frac{n\kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\perp+1} $39 40 or 41 42 $\rho c_v \partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1} \partial_i nb_i b_j \partial_j T^{\lambda_\parallel+1} + \frac{\kappa_\perp}{\left ( \lambda_\perp + 1\right )} \partial_i n^2 B^{-2} \left ( \delta_{ij} - b_i b_j \right ) \partial_j T^{\lambda_\perp +1} $30 $\rho c_v \partial_t T = \partial_i \left [ b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right ) - \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j T^{\lambda_\perp + 1} \right ) \right ) + \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \partial_i T^{\lambda_\perp+1} \right ]$ 31 32 or 33 34 $\rho c_v \partial_t T = \partial_i \left [ b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right ) - \frac{ \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j T^{\lambda_\perp + 1} \right ) \right ) + \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \delta_{ij} \partial_j T^{\lambda_\perp+1} \right ]$ 35 36 or 37 38 $\rho c_v \partial_t T = \partial_i b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} + \partial_i n^2 \left ( \delta_{ij} - b_i b_j \right ) \frac{n^2 \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\perp+1} $ 39 40 or 41 42 $\rho c_v \partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1} \partial_i b_i b_j \partial_j T^{\lambda_\parallel+1} + \frac{\kappa_\perp}{\left ( \lambda_\perp + 1\right )} \partial_i n^2 B^{-2} \left ( \delta_{ij} - b_i b_j \right ) \partial_j T^{\lambda_\perp +1} $ 43 43 44 44 == Implicitization == … … 52 52 $A_\parallel = \frac{\kappa_\parallel}{\rho c_v \left ( \lambda_\parallel + 1\right ) }$ and $A_\perp = \frac{\kappa_\perp}{\rho c_v \left (\lambda_\perp + 1 \right )}$ 53 53 54 and $B_{\parallel, ij} = nb_i b_j$ and $B_{\perp, ij} = n^2 B^-2 b_i b_j \left ( 1 - \delta_{ij} \right )$54 and $B_{\parallel, ij} = b_i b_j$ and $B_{\perp, ij} = n^2 B^-2 b_i b_j \left ( 1 - \delta_{ij} \right )$ 55 55 56 56 Now to solve this implicitly, we need to replace $T$ with $T_*$ where … … 129 129 || || $\parallel$ || $\perp$ || 130 130 || $A$ || $\frac{\kappa_\parallel}{\rho c_v \left ( \lambda_\parallel + 1 \right ) }$ || $\frac{\kappa_\perp}{\rho c_v \left (\lambda_\perp + 1\right )}$ || 131 || $B_{ij} $ || $ nb_i b_j$ || $n^2 B^-2 b_i b_j \left ( 1 - \delta_{ij} \right )$ ||131 || $B_{ij} $ || $b_i b_j$ || $n^2 B^-2 b_i b_j \left ( 1 - \delta_{ij} \right )$ || 132 132 || $C$ || $\left ( 1 - \phi \left ( \lambda_\parallel + 1 \right ) \right )$ || $\left ( 1 - \phi \left ( \lambda_\perp + 1 \right ) \right )$ || 133 133 || $D$ || $\phi \left ( \lambda_\parallel + 1 \right )$ || $\phi \left ( \lambda_\perp + 1 \right ) $||