115 | | $T_0 + \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $ |
116 | | $T'_0 - \displaystyle \sum_{\parallel, \perp} D \left [ \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$ |
| 115 | $T_0 + \Delta t \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $ |
| 116 | $T'_0 - \Delta t \displaystyle \sum_{\parallel, \perp} D \left [ \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$ |
| 184 | === Time stepping === |
| 185 | The implicit method requires approximating |
| 186 | |
| 187 | $T*^{\lambda+1} = T^{\lambda + 1} + \left ( \lambda + 1 \right ) T^{\lambda} \left [ \left ( T_{*} - T \right ) + \frac{\lambda}{2} \frac{T_{*} - T}{T} \right ]$ |
| 188 | |
| 189 | but solving this accurately with a linear method requires |
| 190 | |
| 191 | $\frac{T_{*}-T}{T} << 1$ |
| 192 | |
| 193 | but this restricts our time step. Using the instantaneous derivatives, we can calculate the maximum time step as |
| 194 | |
| 195 | |
| 196 | $T_0'-T_0 \approx \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ]$ |
| 197 | |
| 198 | so |
| 199 | |
| 200 | $\Delta t < \epsilon \frac{T_0}{\displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ]}$ |
| 201 | |
188 | | $T_0 + \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = T'_0$ |
189 | | |
| 206 | $T_0 + \Delta t \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = T'_0$ |
| 207 | |
| 208 | === Explicit time stepping === |
| 209 | |
| 210 | For the explicit scheme to be stable, we must have |
| 211 | |
| 212 | $\Delta t < \frac{1}{2\displaystyle \max_{\parallel, \perp, i} \left [ | \alpha_i T_i^{\lambda} | \right ]}$ |