Changes between Version 2 and Version 3 of u/johannjc/scratchpad5


Ignore:
Timestamp:
10/01/15 09:57:58 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad5

    v2 v3  
    1111So we can rewrite the equations as
    1212
    13 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n \kappa_\perp}{B^2} T^{\lambda_perp} \nabla T \right ]$
     13$\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \nabla T \right ]$
    1414
     15or
     16
     17$\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} ]$
    1518
    1619Let's first just consider the $\chi_\parallel$ term.