Changes between Version 2 and Version 3 of u/johannjc/scratchpad5
- Timestamp:
- 10/01/15 09:57:58 (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad5
v2 v3 11 11 So we can rewrite the equations as 12 12 13 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n \kappa_\perp}{B^2} T^{\lambda_ perp} \nabla T \right ]$13 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \kappa_\parallel T^{\lambda_\parallel} - \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \right ) \left ( \hat{b} \cdot \nabla T \right ) + \frac{n \kappa_\perp}{B^2} T^{\lambda_\perp} \nabla T \right ]$ 14 14 15 or 16 17 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} ]$ 15 18 16 19 Let's first just consider the $\chi_\parallel$ term.