Changes between Version 3 and Version 4 of u/johannjc/scratchpad5


Ignore:
Timestamp:
10/01/15 10:07:39 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad5

    v3 v4  
    1515or
    1616
    17 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} ]$
     17$\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$
     18
     19or in Einstein notation
     20
     21$\partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j  T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \partial_i T^{\lambda_\perp+1} \right ]$
     22
     23or
     24
     25$\partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right )  - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j  T^{\lambda_\perp + 1} \right )  \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \delta_{ij} \partial_j T^{\lambda_\perp+1} \right ]$
     26
     27or
     28
     29$\partial_t T = \partial_i n b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} +   \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\parallel+1} $
     30
     31or
     32
     33$\partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1}  \partial_i n b_i  b_j \partial_j T^{\lambda_\parallel+1} +   \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_i n \left ( \delta_{ij} - b_i b_j \right )  \partial_j T^{\lambda_\parallel+1} $
     34
    1835
    1936Let's first just consider the $\chi_\parallel$ term.