17 | | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} ]$ |
| 17 | $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$ |
| 18 | |
| 19 | or in Einstein notation |
| 20 | |
| 21 | $\partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j T^{\lambda_\perp + 1} \right ) \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \partial_i T^{\lambda_\perp+1} \right ]$ |
| 22 | |
| 23 | or |
| 24 | |
| 25 | $\partial_t T = \partial_i \left [ n b_i \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( b_j \partial_j T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( b_j \partial_j T^{\lambda_\perp + 1} \right ) \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \delta_{ij} \partial_j T^{\lambda_\perp+1} \right ]$ |
| 26 | |
| 27 | or |
| 28 | |
| 29 | $\partial_t T = \partial_i n b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} + \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\parallel+1} $ |
| 30 | |
| 31 | or |
| 32 | |
| 33 | $\partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1} \partial_i n b_i b_j \partial_j T^{\lambda_\parallel+1} + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \partial_j T^{\lambda_\parallel+1} $ |
| 34 | |