Changes between Version 4 and Version 5 of u/johannjc/scratchpad5


Ignore:
Timestamp:
10/01/15 10:50:26 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad5

    v4 v5  
    2727or
    2828
    29 $\partial_t T = \partial_i n b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} +   \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\parallel+1} $
    30 
    31 or
    32 
    33 $\partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1}  \partial_i n b_i  b_j \partial_j T^{\lambda_\parallel+1} +   \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_i n \left ( \delta_{ij} - b_i b_j \right )  \partial_j T^{\lambda_\parallel+1} $
     29$\partial_t T = \partial_i n b_i \frac{\kappa_\parallel}{\lambda_\parallel+1} b_j \partial_j T^{\lambda_\parallel+1} +   \partial_i n \left ( \delta_{ij} - b_i b_j \right ) \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_j T^{\lambda_\perp+1} $
     30
     31or
     32
     33$\partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1}  \partial_i n b_i  b_j \partial_j T^{\lambda_\parallel+1} +   \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_i n \left ( \delta_{ij} - b_i b_j \right )  \partial_j T^{\lambda_\perp +1} $
     34
     35Now both of these terms are of the form
     36
     37$ A \partial_i  B_{ij} \partial_j T^{\lambda+1}$
     38
     39Now to solve this implicitly, we need to replace $T$ with $T_*$ where
     40
     41$T_* = T + \phi ( T' - T ) = (1-\phi) T + \phi T'$
     42
     43Note for Backward Euler, $\phi = 1$ and for Crank Nicholson, $\phi = 1/2$
     44
     45$ A \partial_i  B_{ij} \partial_j T_*^{\lambda+1}$
     46
     47so we have
     48
     49$A \partial_i  B_{ij} \partial_j \left ((1-\phi) T + \phi T' \right )^{\lambda+1}$
     50
     51Now to solve this using a linear system, we need to linearize terms involving $T'$
     52
     53So we need to Taylor expand about $T$
     54
     55$\left ((1-\phi) T + \phi T' \right )^{\lambda+1} \approx T^{\lambda + 1} + \left ( \lambda + 1 \right ) T^{\lambda} \phi \left ( T' - T \right ) $
     56
     57or
     58
     59$\left ((1-\phi) T + \phi T' \right )^{\lambda+1} \approx \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) T^{\lambda} T'$
     60
     61Now we could also have expanded $T_*^{\lambda+1}$ and then plug in $T_*=\left ( 1 - \phi \right ) T + \phi T'$.  In that case we also get
     62
     63
     64$T_*^{\lambda + 1} \approx T^{\lambda + 1} +  \left ( \lambda + 1 \right ) T^{\lambda} \left ( T_{*} - T \right ) =  T^{\lambda + 1} +  \left ( \lambda + 1 \right ) T^{\lambda} \phi \left ( T' - T \right )$
     65$= \left(1 - \phi \left ( \lambda + 1\right ) \right ) T^{\lambda + 1}+  \phi \left ( \lambda + 1 \right ) T^{\lambda} T' $
     66
     67
     68So we have
     69
     70$A \partial_i  B_{ij} \partial_j \left [ \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) T^{\lambda} T' \right ]$
     71
     72$A \partial_i  B_{ij} \left [ \left ( 1 - \phi \left ( \lambda + 1 \right ) \right ) \partial_j T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) \partial_j T^{\lambda} T' \right ]$
     73
     74$A \partial_i  B_{ij} \left [ C_\lambda  \partial_j T^{\lambda + 1} + D_\lambda  \partial_j T^{\lambda} T' \right ]$
     75
     76where $ C_\lambda= \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )$ and $ D_\lambda = \phi \left ( \lambda + 1 \right )$
     77
     78Now we can expand the derivatives and get
     79
     80$A \left ( \partial_i  B_{ij} \right ) \left ( C_\lambda  \partial_j T^{\lambda + 1} + D_\lambda  \partial_j T^{\lambda} T' \right ) + A B_{ij} \left ( C_\lambda  \partial_i \partial_j T^{\lambda + 1} + D_\lambda  \partial_i \partial_j T^{\lambda} T' \right ) $
     81
     82
    3483
    3584