Changes between Version 6 and Version 7 of u/johannjc/scratchpad5
- Timestamp:
- 10/01/15 11:16:31 (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad5
v6 v7 74 74 $A \partial_i B_{ij} \left [ C_\lambda \partial_j T^{\lambda + 1} + D_\lambda \partial_j T^{\lambda} T' \right ]$ 75 75 76 where $ C _\lambda= \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )$ and $ D_\lambda= \phi \left ( \lambda + 1 \right )$76 where $ C= \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )$ and $ D = \phi \left ( \lambda + 1 \right )$ 77 77 78 78 Now we can expand the derivatives and get … … 88 88 We can also write this as 89 89 90 $\partial_t T = \displaystyle \sum_{\parallel,\perp}{ E \partial_j T^{\lambda + 1} + F \partial_j T^{\lambda} T' + G \partial_i \partial_j T^{\lambda + 1} + H\partial_i \partial_j T^{\lambda} T'} $90 $\partial_t T = \displaystyle \sum_{\parallel,\perp}{CE \partial_j T^{\lambda + 1} + DE \partial_j T^{\lambda} T' + CF \partial_i \partial_j T^{\lambda + 1} + DF \partial_i \partial_j T^{\lambda} T'} $ 91 91 92 92 where 93 93 94 $E = A \left ( \partial_i B_{ij} \right ) C$94 $E = A \left ( \partial_i B_{ij} \right )$ 95 95 96 $F = A \left ( \partial_i B_{ij} \right ) D$ 97 98 $G = A B_{ij} C$ 99 100 $H = A B_{ij} D$ 101 96 $F = A B_{ij}$ 102 97 103 98 … … 118 113 119 114 120 $ -T_0 - \phi' \left [ \alpha_0 T^{\lambda+1}_0 - \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} -\sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $121 $ -T'_0 + \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}}$115 $T_0 - \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 - \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} - \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $ 116 $T'_0 + \displaystyle \sum_{\parallel, \perp} D \left [ \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,|i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$ 122 117 123 118 where