Changes between Version 8 and Version 9 of u/johannjc/scratchpad5
- Timestamp:
- 10/01/15 13:49:51 (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad5
v8 v9 1 == Basic Equations == 1 2 The anisotropic conduction equation looks like 2 3 … … 9 10 $\chi_\perp = \kappa_\perp \frac{n}{B^2 T^{1/2}}$ 10 11 12 == Collecting power's of T == 13 11 14 So we can rewrite the equations as 12 15 … … 16 19 17 20 $\frac{\partial T}{\partial t} = \nabla \cdot \left [ n \hat{b} \left ( \frac{\kappa_\parallel}{\lambda_\parallel+1} \left ( \hat{b} \cdot \nabla T^{\lambda_\parallel+1} \right ) - \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp+1 \right )} \left ( \hat{b} \cdot \nabla T^{\lambda_\perp + 1} \right ) \right ) + \frac{n \kappa_\perp}{B^2 \left ( \lambda_\perp +1 \right )} \nabla T^{\lambda_\perp+1} \right ]$ 21 22 == Einstein simplification == 18 23 19 24 or in Einstein notation … … 31 36 or 32 37 33 $\partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1} \partial_i n b_i b_j \partial_j T^{\lambda_\parallel+1} + \frac{ n \kappa_\perp}{B^2 \left ( \lambda_\perp + 1\right )} \partial_i n\left ( \delta_{ij} - b_i b_j \right ) \partial_j T^{\lambda_\perp +1} $38 $\partial_t T = \frac{\kappa_\parallel}{\lambda_\parallel+1} \partial_i n b_i b_j \partial_j T^{\lambda_\parallel+1} + \frac{\kappa_\perp}{\left ( \lambda_\perp + 1\right )} \partial_i n^2 B^{-2} \left ( \delta_{ij} - b_i b_j \right ) \partial_j T^{\lambda_\perp +1} $ 34 39 35 Now both of these terms are of the form 40 == Implicitization == 36 41 37 $ A \partial_i B_{ij} \partial_j T^{\lambda+1}$ 42 Now we can rewrite the equation 43 44 $\partial_t T = \displaystyle \sum_{\parallel, \perp} A \partial_i B_{ij} \partial_j T^{\lambda+1}$ 45 46 where the $\parallel$ or $\perp$ subscript on $A$, $B_{ij}$, and $lambda$ is implied. 47 48 $A_\parallel = \frac{\kappa_\parallel}{\lambda_\parallel + 1}$ and $A_\perp = \frac{\kappa_\perp}{\lambda_\perp + 1}$ 49 50 and $B_{\parallel, ij} = n b_i b_j$ and $B_{\perp, ij} = n^2 B^-2 b_i b_j \left ( 1 - \delta_{ij} \right )$ 38 51 39 52 Now to solve this implicitly, we need to replace $T$ with $T_*$ where … … 43 56 Note for Backward Euler, $\phi = 1$ and for Crank Nicholson, $\phi = 1/2$ 44 57 45 $ A \partial_i B_{ij} \partial_j T_*^{\lambda+1}$58 $ \partial_t T = \displaystyle \sum_{\parallel, \perp} A \partial_i B_{ij} \partial_j T_*^{\lambda+1}$ 46 59 47 so we have 48 49 $A \partial_i B_{ij} \partial_j \left ((1-\phi) T + \phi T' \right )^{\lambda+1}$ 50 51 Now to solve this using a linear system, we need to linearize terms involving $T'$ 52 53 So we need to Taylor expand about $T$ 54 55 $\left ((1-\phi) T + \phi T' \right )^{\lambda+1} \approx T^{\lambda + 1} + \left ( \lambda + 1 \right ) T^{\lambda} \phi \left ( T' - T \right ) $ 56 57 or 58 59 $\left ((1-\phi) T + \phi T' \right )^{\lambda+1} \approx \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) T^{\lambda} T'$ 60 61 Now we could also have expanded $T_*^{\lambda+1}$ and then plug in $T_*=\left ( 1 - \phi \right ) T + \phi T'$. In that case we also get 62 60 It is simpler to linearize the equation in terms of $T_*$ and then subsitute then vice-versa - though both give the same answer 63 61 64 62 $T_*^{\lambda + 1} \approx T^{\lambda + 1} + \left ( \lambda + 1 \right ) T^{\lambda} \left ( T_{*} - T \right ) = T^{\lambda + 1} + \left ( \lambda + 1 \right ) T^{\lambda} \phi \left ( T' - T \right )$ … … 68 66 So we have 69 67 70 $ A \partial_i B_{ij} \partial_j \left [ \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) T^{\lambda} T' \right ]$68 $\partial_t T = \displaystyle \sum_{\parallel, \perp}{A \partial_i B_{ij} \partial_j \left [ \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) T^{\lambda} T' \right ]}$ 71 69 72 $ A \partial_i B_{ij} \left [ \left ( 1 - \phi \left ( \lambda + 1 \right ) \right ) \partial_j T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) \partial_j T^{\lambda} T' \right ]$70 $\partial_t T = \displaystyle \sum_{\parallel, \perp}{A \partial_i B_{ij} \left [ \left ( 1 - \phi \left ( \lambda + 1 \right ) \right ) \partial_j T^{\lambda + 1} + \phi \left ( \lambda + 1 \right ) \partial_j T^{\lambda} T' \right ]}$ 73 71 74 $ A \partial_i B_{ij} \left [ C_\lambda \partial_j T^{\lambda + 1} + D_\lambda \partial_j T^{\lambda} T' \right ]$72 $\partial_t T = \displaystyle \sum_{\parallel, \perp}{A \partial_i B_{ij} \left [ C \partial_j T^{\lambda + 1} + D \partial_j T^{\lambda} T' \right ]}$ 75 73 76 74 where $ C= \left ( 1 - \phi \left ( \lambda + 1 \right ) \right )$ and $ D = \phi \left ( \lambda + 1 \right )$ … … 78 76 Now we can expand the derivatives and get 79 77 80 $A \left ( \partial_i B_{ij} \right ) \left ( C \partial_j T^{\lambda + 1} + D \partial_j T^{\lambda} T' \right ) + A B_{ij} \left ( C \partial_i \partial_j T^{\lambda + 1} + D \partial_i \partial_j T^{\lambda} T' \right ) $ 78 == Expand Derivatives == 81 79 82 and the whole equation is then 83 84 $\partial_t T = \displaystyle \sum_{\parallel,\perp}{A \left ( \partial_i B_{ij} \right ) \left ( C \partial_j T^{\lambda + 1} + D \partial_j T^{\lambda} T' \right ) + A B_{ij} \left ( C \partial_i \partial_j T^{\lambda + 1} + D \partial_i \partial_j T^{\lambda} T' \right )} $ 85 86 where $A$, $B$, $C$, $D$, and $\lambda$ are functions of $\perp,\parallel$ 80 $\partial_t T = \displaystyle \sum_{\parallel, \perp}{A \left ( \partial_i B_{ij} \right ) \left ( C \partial_j T^{\lambda + 1} + D \partial_j T^{\lambda} T' \right ) + A B_{ij} \left ( C \partial_i \partial_j T^{\lambda + 1} + D \partial_i \partial_j T^{\lambda} T' \right )} $ 87 81 88 82 We can also write this as 89 83 90 $\partial_t T = \displaystyle \sum_{\parallel,\perp}{CE \partial_j T^{\lambda + 1} + DE \partial_j T^{\lambda} T' + CF \partial_i \partial_j T^{\lambda + 1} + DF\partial_i \partial_j T^{\lambda} T'} $84 $\partial_t T = \displaystyle \sum_{\parallel,\perp}{CE_j \partial_j T^{\lambda + 1} + DE_j \partial_j T^{\lambda} T' + CF_{ij} \partial_i \partial_j T^{\lambda + 1} + DF_{ij} \partial_i \partial_j T^{\lambda} T'} $ 91 85 92 86 where … … 96 90 $F_{ij} = A B_{ij}$ 97 91 92 93 == Discretization == 98 94 99 95 We then need expressions for … … 110 106 111 107 112 We can also write theequation as108 Using the above definitions, we can write the discretized equation as 113 109 114 110 115 $T_0 - \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 - \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} - \sum_{\pm i, \pm j, |i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $116 $T'_0 + \displaystyle \sum_{\parallel, \perp} D \left [ \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j, |i| \ne |j|} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$111 $T_0 - \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 - \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} - \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $ 112 $T'_0 + \displaystyle \sum_{\parallel, \perp} D \left [ \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$ 117 113 118 114 where … … 124 120 $\alpha_{\pm i, \pm j} = \pm \pm \frac{F_{ij}\Delta t}{4 \Delta x^2}$ 125 121 122 123 == Summary == 124 125 || || $\parallel$ || $\perp$ || 126 || $A$ || $\frac{\kappa_\parallel}{\lambda_\parallel + 1}$ || $\frac{\kappa_\perp}{\lambda_\perp + 1}$ || 127 || $B$ || $n b_i b_j$ || $n^2 B^-2 b_i b_j \left ( 1 - \delta_{ij} \right )$ || 128 || $C$ || $\left ( 1 - \phi \left ( \lambda_\parallel + 1 \right ) \right )$ || $\left ( 1 - \phi \left ( \lambda_\perp + 1 \right ) \right )$ || 129 || $D$ || $\phi \left ( \lambda_\parallel + 1 \right )$ || $\phi \left ( \lambda_\perp + 1 \right ) $|| 130 131 And then using those we can calculate 132 133 || $E$ || $A \left ( \partial_i B_{ij} \right )$ || 134 || $F$ || $A B_{ij}$ || 135 ||$\alpha_0 $ ||$ -\frac{2F_{ij}\delta_{ij} \Delta t}{\Delta x^2}$ || 136 ||$\alpha_{\pm j}$ || $ \pm \frac{E_j \Delta t}{2 \Delta x} + \frac{F_{jj}\Delta t}{\Delta x^2}$ || 137 ||$\alpha_{\pm i, \pm j}$ || $ \pm \pm \frac{F_{ij}\Delta t}{4 \Delta x^2}$ || 138