76 | | $ \frac{\Delta T'_{\vec{k'}}}{\Delta t} - \phi \left ( \lambda + 1 \right ) \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 \left ( \psi T_{\vec{k'}} + \phi T'_{\vec{k'}} \right ) ^{\lambda} \Delta T'_{\vec{k'}} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\vec{k'}\pm \hat{j}} + \phi T'_{\vec{k'}\pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k'} \pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\vec{k'}\pm \hat{i} \pm \hat{j}} + \phi T'_{\vec{k'}\pm \hat{i} \pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k'}} \right ] =-\Xi_{\vec{k'}}(\vec{T'})$ |
77 | | |
78 | | This gives our first correction as |
79 | | |
80 | | $T''_0 = T'_0 - \frac{T_0' - T_0 - \Delta t \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 \left ( \psi T_0 + \phi T'_0 \right ) ^{\lambda+1} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\pm \hat{j}} + \phi T'_{\pm \hat{j}} \right )^{\lambda+1} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\pm \hat{i} \pm \hat{j}} + \phi T'_{\pm \hat{i} \pm \hat{j}} \right )^{\lambda+1} \right ]}{1 - \Delta t \phi \left ( \lambda + 1 \right ) \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 \left ( \psi T_0 + \phi T'_0 \right ) ^{\lambda} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\pm \hat{j}} + \phi T'_{\pm \hat{j}} \right )^{\lambda} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\pm \hat{i} \pm \hat{j}} + \phi T'_{\pm \hat{i} \pm \hat{j}} \right )^{\lambda} \right ]}$ |
| 76 | $ \frac{\Delta T'_{\vec{k'}}}{\Delta t} - \displaystyle \sum_{\parallel, \perp} \phi \left ( \lambda + 1 \right ) $ |
| 77 | $\left [ \alpha_0 \left ( \psi T_{\vec{k'}} + \phi T'_{\vec{k'}} \right ) ^{\lambda} \Delta T'_{\vec{k'}} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\vec{k'}\pm \hat{j}} + \phi T'_{\vec{k'}\pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k'} \pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\vec{k'}\pm \hat{i} \pm \hat{j}} + \phi T'_{\vec{k'}\pm \hat{i} \pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k'}\pm \hat{i} \pm \hat{j}} \right ]$ |
| 78 | $ =-\Xi_{\vec{k'}}(\vec{T'})$ |
85 | | $T''_0 = \frac{T_0 + \Delta t \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 \left ( \psi T_0 + \phi T'_0 \right ) ^{\lambda}\left ( \psi T_0 - \phi \lambda T'_0 \right ) + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\pm \hat{j}} + \phi T'_{\pm \hat{j}} \right )^{\lambda} \left (\psi T_{\pm \hat{j}} - \phi \lambda T'_{\pm \hat{j}} \right ) + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\pm \hat{i} \pm \hat{j}} + \phi T'_{\pm \hat{i} \pm \hat{j}} \right )^{\lambda} \left ( \psi T_{\pm \hat{i} \pm \hat{j}} - \phi \lambda T'_{\pm \hat{i} \pm \hat{j}} \right ) \right ]}{1 - \Delta t \phi \left ( \lambda + 1 \right ) \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 \left ( \psi T_0 + \phi T'_0 \right ) ^{\lambda} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\pm \hat{j}} + \phi T'_{\pm \hat{j}} \right )^{\lambda} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\pm \hat{i} \pm \hat{j}} + \phi T'_{\pm \hat{i} \pm \hat{j}} \right )^{\lambda} \right ]}$ |
| 83 | $ \Delta T'_{\vec{k}}- \Delta t \phi \left ( \lambda + 1 \right ) \displaystyle \sum_{\parallel, \perp} $ |
| 84 | $\left [ \alpha_0 \left ( \psi T_{\vec{k}} + \phi T'_{\vec{k}} \right ) ^{\lambda} \Delta T'_{\vec{k}} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\vec{k}\pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k} \pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\vec{k}\pm \hat{i} \pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{i} \pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k}\pm \hat{i} \pm \hat{j}} \right ]$ |
| 85 | |
| 86 | $ = -T'_{\vec{k}} + T_{\vec{k}} + \Delta t \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 \left ( \psi T_{\vec{k}} + \phi T'_{\vec{k}} \right ) ^{\lambda+1} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\vec{k}\pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{j}} \right )^{\lambda+1} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\vec{k}\pm \hat{i} \pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{i} \pm \hat{j}} \right )^{\lambda+1} \right ]$ |
| 87 | |
| 88 | |
| 89 | or we can write it as |
| 90 | |
| 91 | |
| 92 | $ T''_{\vec{k}} = T'_{\vec{k}} + \Delta T'_{\vec{k}} = T_{\vec{k}} + \Delta t \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 \left ( \psi T_{\vec{k}} + \phi T'_{\vec{k}} \right ) ^{\lambda+1} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\vec{k}\pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{j}} \right )^{\lambda+1} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\vec{k}\pm \hat{i} \pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{i} \pm \hat{j}} \right )^{\lambda+1} \right ] $ |
| 93 | $ +\Delta t \displaystyle \sum_{\parallel, \perp} \phi \left ( \lambda + 1 \right ) $ |
| 94 | $\left [ \alpha_0 \left ( \psi T_{\vec{k}} + \phi T'_{\vec{k}} \right ) ^{\lambda} \Delta T'_{\vec{k}} + \displaystyle \sum_{\pm j} \alpha_{\pm j} \left (\psi T_{\vec{k}\pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k} \pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} \left ( \psi T_{\vec{k}\pm \hat{i} \pm \hat{j}} + \phi T'_{\vec{k}\pm \hat{i} \pm \hat{j}} \right )^{\lambda} \Delta T'_{\vec{k}\pm \hat{i} \pm \hat{j}} \right ]$ |
| 95 | |
| 96 | |
| 97 | Now if we start with $T'=T$ and set $\Delta T' = T''-T$ we end up with |
| 98 | |
| 99 | $ T''_{\vec{k}} = T_{\vec{k}} + \Delta t \displaystyle \sum_{\parallel, \perp} \left [ \alpha_0 T_{\vec{k}}^{\lambda+1} + \displaystyle \sum_{\pm j} \alpha_{\pm j}T_{\vec{k}\pm \hat{j}}^{\lambda+1} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T_{\vec{k}\pm \hat{i} \pm \hat{j}}^{\lambda+1} \right ] $ |
| 100 | $ +\Delta t \displaystyle \sum_{\parallel, \perp} \phi \left ( \lambda + 1 \right ) $ |
| 101 | $\left [ \alpha_0 T_{\vec{k}}^{\lambda} \left(T''_{\vec{k}} - T_{\vec{k}} \right ) + \displaystyle \sum_{\pm j} \alpha_{\pm j} T_{\vec{k}\pm \hat{j}}^{\lambda} \left(T''_{\vec{k}\pm \hat{j}} - T_{\vec{k}\pm \hat{j}} \right ) + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T_{\vec{k}\pm \hat{i} \pm \hat{j}}^{\lambda} \left ( T''_{\vec{k}\pm \hat{i} \pm \hat{j}} - T_{\vec{k}\pm \hat{i} \pm \hat{j}} \right ) \right ]$ |
| 102 | |
| 103 | which can be rearranged as |
| 104 | |
| 105 | |
| 106 | $ T''_{\vec{k}} - \Delta t \displaystyle \sum_{\parallel, \perp} \phi \left ( \lambda + 1 \right ) $ |
| 107 | $\left [ \alpha_0 T_{\vec{k}}^{\lambda} T''_{\vec{k}} + \displaystyle \sum_{\pm j} \alpha_{\pm j} T_{\vec{k}\pm \hat{j}}^{\lambda} T''_{\vec{k}\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T_{\vec{k}\pm \hat{i} \pm \hat{j}}^{\lambda}T''_{\vec{k}\pm \hat{i} \pm \hat{j}} \right ] $ |
| 108 | $= T_{\vec{k}} + \Delta t \displaystyle \sum_{\parallel, \perp} \left ( 1 - \phi \left ( \lambda + 1 \right ) \right ) \left [ \alpha_0 T_{\vec{k}}^{\lambda+1} + \displaystyle \sum_{\pm j} \alpha_{\pm j}T_{\vec{k}\pm \hat{j}}^{\lambda+1} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T_{\vec{k}\pm \hat{i} \pm \hat{j}}^{\lambda+1} \right ] $ |
| 109 | |
| 110 | |
| 111 | which is the linearized implicit equation we are solving. Not surprisingly, a single-step newton method is what we are doing by Taylor expanding $T*^{\lambda+1}$. |