Changes between Version 5 and Version 6 of u/johannjc/scratchpad7


Ignore:
Timestamp:
10/12/15 14:10:01 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad7

    v5 v6  
    9696
    9797
    98 $T_0 + \Delta t \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 +  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} +  \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $
    99 $T'_0 - \Delta t \displaystyle \sum_{\parallel, \perp} D \left [  \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$
     98$T_0 + \Delta t \displaystyle \sum_{\parallel, \perp} AC \left [ \alpha_0 T^{\lambda+1}_0 +  \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} +  \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $
     99$T'_0 - \Delta t \displaystyle \sum_{\parallel, \perp} AD \left [  \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$
    100100
    101101where
     
    105105$\alpha_{\pm i} = \frac{B^{ii}_{\pm \hat{i}}}{\Delta x^2}$
    106106
    107 $\alpha_{\pm i, \pm j} = \pm \pm \frac{B^{ij}_{\pm \hat{i}}}{4 \Delta x^2} $ where the $\pm$ in $B_{\pm \hat{i}}$ corresponds to the $\pm i$ term.
     107$\alpha_{\pm i, \pm j} =  \pm \pm \frac{B^{ij}_{\pm \hat{i}}}{4 \Delta x^2} $ where the $\pm$ in $B_{\pm \hat{i}}$ corresponds to the $\pm i$ term.
     108
     109
     110Also note, that the indexing of the temperatures is commutative, and that all of the diagonal temperature terms will have two contributions.  One from $\alpha \pm i \pm j$ and one from $\alpha \pm j \pm i$.  We can rewrite
     111
     112$\displaystyle \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = \sum_{\pm i, \pm j,i < j} \left ( \alpha_{\pm i, \pm j} + \alpha_{\pm j, \pm i} \right ) T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = \sum_{\pm i, \pm j,i < j} \alpha*_{\pm i, \pm j}T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}}$
     113
     114where
     115
     116$\alpha*_{\pm i \pm j} = \pm \pm \frac{B^{ij}_{\pm \hat{i}}+B^{ji}_{\pm \hat{j}}}{4 \Delta x^2}$
    108117
    109118
     
    113122|| $A$ || $\frac{\kappa_\parallel}{\rho c_v  \left ( \lambda_\parallel + 1 \right ) }$ || $\frac{\kappa_\perp}{\rho c_v  \left (\lambda_\perp + 1\right )}$ ||
    114123|| $B_{ij} $ || $b_i b_j$ || $n^2 B^{-2} b_i b_j \left ( 1 - \delta_{ij} \right )$ ||
    115 || $C$ ||  $\left ( 1 - \phi \left ( \lambda_\parallel + 1 \right ) \right )$ ||  $\left ( 1 - \phi \left ( \lambda_\perp + 1 \right ) \right )$ ||
    116 || $D$ ||  $\phi \left ( \lambda_\parallel + 1 \right )$ ||  $\phi \left ( \lambda_\perp + 1 \right ) $||
    117 
    118 And then using those we can calculate
    119 
    120 || $E_j$ || $A \left ( \partial_i  B_{ij} \right )$ ||
    121 || $F_{ij}$ || $A B_{ij}$ ||
    122 ||$\alpha_0 $ ||$ -\frac{2F_{ij}\delta_{ij} }{\Delta x^2}$ ||
    123 ||$\alpha_{\pm j}$ || $ \pm \frac{E_j }{2 \Delta x} + \frac{F_{jj}\Delta t}{\Delta x^2}$ ||
    124 ||$\alpha_{\pm i, \pm j}$ || $ \pm \pm \frac{F_{ij}}{4 \Delta x^2}$ ||
     124|| $C$ ||  $\left ( 1 - \phi \left ( \lambda_\parallel + 1 \right ) \right )$ ||  $ \left ( 1 - \phi \left ( \lambda_\perp + 1 \right ) \right )$ ||
     125|| $D$ ||  $\phi \left ( \lambda_\parallel + 1 \right )$ ||  $ \phi \left ( \lambda_\perp + 1 \right ) $||
     126
     127||$\alpha_0$ || $- \displaystyle \sum_{i} \frac{B^{ii}_{\hat{i}} + B^{ii}_{-\hat{i}}}{\Delta x^2}$ ||
     128||$\alpha_{\pm i}$ || $ \frac{B^{ii}_{\pm \hat{i}}}{\Delta x^2}$ ||
     129|| $\alpha*_{\pm i \pm j}$ || $ \pm \pm \frac{B^{ij}_{\pm \hat{i}}+B^{ji}_{\pm \hat{j}}}{4 \Delta x^2}$ ||
    125130
    126131