98 | | $T_0 + \Delta t \displaystyle \sum_{\parallel, \perp} C \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $ |
99 | | $T'_0 - \Delta t \displaystyle \sum_{\parallel, \perp} D \left [ \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$ |
| 98 | $T_0 + \Delta t \displaystyle \sum_{\parallel, \perp} AC \left [ \alpha_0 T^{\lambda+1}_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda+1}_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} \right ] = $ |
| 99 | $T'_0 - \Delta t \displaystyle \sum_{\parallel, \perp} AD \left [ \alpha_0 T^{\lambda}_0T'_0 + \displaystyle \sum_{\pm j} \alpha_{\pm j} T^{\lambda}_{\pm \hat{j}} T'_{\pm \hat{j}} + \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda}_{\pm \hat{i} \pm \hat{j}} T'_{\pm \hat{i} \pm \hat{j}} \right ]$ |
107 | | $\alpha_{\pm i, \pm j} = \pm \pm \frac{B^{ij}_{\pm \hat{i}}}{4 \Delta x^2} $ where the $\pm$ in $B_{\pm \hat{i}}$ corresponds to the $\pm i$ term. |
| 107 | $\alpha_{\pm i, \pm j} = \pm \pm \frac{B^{ij}_{\pm \hat{i}}}{4 \Delta x^2} $ where the $\pm$ in $B_{\pm \hat{i}}$ corresponds to the $\pm i$ term. |
| 108 | |
| 109 | |
| 110 | Also note, that the indexing of the temperatures is commutative, and that all of the diagonal temperature terms will have two contributions. One from $\alpha \pm i \pm j$ and one from $\alpha \pm j \pm i$. We can rewrite |
| 111 | |
| 112 | $\displaystyle \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = \sum_{\pm i, \pm j,i < j} \left ( \alpha_{\pm i, \pm j} + \alpha_{\pm j, \pm i} \right ) T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = \sum_{\pm i, \pm j,i < j} \alpha*_{\pm i, \pm j}T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}}$ |
| 113 | |
| 114 | where |
| 115 | |
| 116 | $\alpha*_{\pm i \pm j} = \pm \pm \frac{B^{ij}_{\pm \hat{i}}+B^{ji}_{\pm \hat{j}}}{4 \Delta x^2}$ |
115 | | || $C$ || $\left ( 1 - \phi \left ( \lambda_\parallel + 1 \right ) \right )$ || $\left ( 1 - \phi \left ( \lambda_\perp + 1 \right ) \right )$ || |
116 | | || $D$ || $\phi \left ( \lambda_\parallel + 1 \right )$ || $\phi \left ( \lambda_\perp + 1 \right ) $|| |
117 | | |
118 | | And then using those we can calculate |
119 | | |
120 | | || $E_j$ || $A \left ( \partial_i B_{ij} \right )$ || |
121 | | || $F_{ij}$ || $A B_{ij}$ || |
122 | | ||$\alpha_0 $ ||$ -\frac{2F_{ij}\delta_{ij} }{\Delta x^2}$ || |
123 | | ||$\alpha_{\pm j}$ || $ \pm \frac{E_j }{2 \Delta x} + \frac{F_{jj}\Delta t}{\Delta x^2}$ || |
124 | | ||$\alpha_{\pm i, \pm j}$ || $ \pm \pm \frac{F_{ij}}{4 \Delta x^2}$ || |
| 124 | || $C$ || $\left ( 1 - \phi \left ( \lambda_\parallel + 1 \right ) \right )$ || $ \left ( 1 - \phi \left ( \lambda_\perp + 1 \right ) \right )$ || |
| 125 | || $D$ || $\phi \left ( \lambda_\parallel + 1 \right )$ || $ \phi \left ( \lambda_\perp + 1 \right ) $|| |
| 126 | |
| 127 | ||$\alpha_0$ || $- \displaystyle \sum_{i} \frac{B^{ii}_{\hat{i}} + B^{ii}_{-\hat{i}}}{\Delta x^2}$ || |
| 128 | ||$\alpha_{\pm i}$ || $ \frac{B^{ii}_{\pm \hat{i}}}{\Delta x^2}$ || |
| 129 | || $\alpha*_{\pm i \pm j}$ || $ \pm \pm \frac{B^{ij}_{\pm \hat{i}}+B^{ji}_{\pm \hat{j}}}{4 \Delta x^2}$ || |