Changes between Version 6 and Version 7 of u/johannjc/scratchpad7
- Timestamp:
- 10/12/15 14:15:32 (9 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc/scratchpad7
v6 v7 136 136 $\frac{\partial T}{\partial t} = D \nabla^2 T$ 137 137 138 where $D$ is the diffusion coefficient. For uniform density, magnetic field, and for $ lambda = 0$, the equations revert to the traditional diffusion equation with138 where $D$ is the diffusion coefficient. For uniform density, magnetic field, and for $\lambda = 0$, the equations revert to the traditional diffusion equation with 139 139 140 140 $D = \frac{n \chi}{\rho c_v}$ … … 171 171 and it is independent of direction, so it is just a scalar. 172 172 173 || $E_j$ || $A \left ( \partial_j \kappa \right )$ || 174 || $F$ || $A \kappa$ || 175 ||$\alpha_0 $ ||$ -\frac{2F\delta_{ii} }{\Delta x^2}$ || 176 ||$\alpha_{\pm j}$ || $ \pm \frac{E_j }{2 \Delta x} + \frac{F}{\Delta x^2}$ || 177 ||$\alpha_{\pm i, \pm j}$ || $ 0$ || 178 179 Also if $\kappa$ is a constant, the $E_j$ terms drop out. 173 174 ||$\alpha_0$ || $- \displaystyle \sum_{i} \frac{B_{\hat{i}} + B_{-\hat{i}}}{\Delta x^2}$ || 175 ||$\alpha_{\pm i}$ || $ \frac{B_{\pm \hat{i}}}{\Delta x^2}$ || 176 || $\alpha*_{\pm i \pm j}$ || $ 0$ || 177 178 Also if $\kappa$ is a constant, then we have 179 180 ||$\alpha_0$ || $- \displaystyle \sum_{i} {2B}{\Delta x^2}$ || 181 ||$\alpha_{\pm i}$ || $ \frac{B}{\Delta x^2}$ || 182 || $\alpha*_{\pm i \pm j}$ || $ 0$ || 183 180 184 181 185