| 173 | | || $E_j$ || $A \left ( \partial_j \kappa \right )$ || |
| 174 | | || $F$ || $A \kappa$ || |
| 175 | | ||$\alpha_0 $ ||$ -\frac{2F\delta_{ii} }{\Delta x^2}$ || |
| 176 | | ||$\alpha_{\pm j}$ || $ \pm \frac{E_j }{2 \Delta x} + \frac{F}{\Delta x^2}$ || |
| 177 | | ||$\alpha_{\pm i, \pm j}$ || $ 0$ || |
| 178 | | |
| 179 | | Also if $\kappa$ is a constant, the $E_j$ terms drop out. |
| | 173 | |
| | 174 | ||$\alpha_0$ || $- \displaystyle \sum_{i} \frac{B_{\hat{i}} + B_{-\hat{i}}}{\Delta x^2}$ || |
| | 175 | ||$\alpha_{\pm i}$ || $ \frac{B_{\pm \hat{i}}}{\Delta x^2}$ || |
| | 176 | || $\alpha*_{\pm i \pm j}$ || $ 0$ || |
| | 177 | |
| | 178 | Also if $\kappa$ is a constant, then we have |
| | 179 | |
| | 180 | ||$\alpha_0$ || $- \displaystyle \sum_{i} {2B}{\Delta x^2}$ || |
| | 181 | ||$\alpha_{\pm i}$ || $ \frac{B}{\Delta x^2}$ || |
| | 182 | || $\alpha*_{\pm i \pm j}$ || $ 0$ || |
| | 183 | |