Changes between Version 6 and Version 7 of u/johannjc/scratchpad7


Ignore:
Timestamp:
10/12/15 14:15:32 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad7

    v6 v7  
    136136$\frac{\partial T}{\partial t} =  D \nabla^2 T$
    137137
    138 where $D$ is the diffusion coefficient.  For uniform density, magnetic field, and for $lambda = 0$, the equations revert to the traditional diffusion equation with
     138where $D$ is the diffusion coefficient.  For uniform density, magnetic field, and for $\lambda = 0$, the equations revert to the traditional diffusion equation with
    139139
    140140$D = \frac{n \chi}{\rho c_v}$
     
    171171and it is independent of direction, so it is just a scalar.
    172172
    173 || $E_j$ || $A \left ( \partial_j \kappa \right )$ ||
    174 || $F$ || $A \kappa$ ||
    175 ||$\alpha_0 $ ||$ -\frac{2F\delta_{ii} }{\Delta x^2}$ ||
    176 ||$\alpha_{\pm j}$ || $ \pm \frac{E_j }{2 \Delta x} +  \frac{F}{\Delta x^2}$ ||
    177 ||$\alpha_{\pm i, \pm j}$ || $ 0$ ||
    178 
    179 Also if $\kappa$ is a constant, the $E_j$ terms drop out.
     173
     174||$\alpha_0$ || $- \displaystyle \sum_{i} \frac{B_{\hat{i}} + B_{-\hat{i}}}{\Delta x^2}$ ||
     175||$\alpha_{\pm i}$ || $ \frac{B_{\pm \hat{i}}}{\Delta x^2}$ ||
     176|| $\alpha*_{\pm i \pm j}$ || $ 0$ ||
     177
     178Also if $\kappa$ is a constant, then we have
     179
     180||$\alpha_0$ || $- \displaystyle \sum_{i} {2B}{\Delta x^2}$ ||
     181||$\alpha_{\pm i}$ || $ \frac{B}{\Delta x^2}$ ||
     182|| $\alpha*_{\pm i \pm j}$ || $ 0$ ||
     183
    180184
    181185