Changes between Version 8 and Version 9 of u/johannjc/scratchpad7


Ignore:
Timestamp:
10/12/15 14:17:38 (9 years ago)
Author:
Jonathan
Comment:

Legend:

Unmodified
Added
Removed
Modified
  • u/johannjc/scratchpad7

    v8 v9  
    110110Also note, that the indexing of the temperatures is commutative, and that all of the diagonal temperature terms will have two contributions.  One from $\alpha_{\pm i \pm j}$ and one from $\alpha_{\pm j \pm i}$.  We can rewrite
    111111
    112 $\displaystyle \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = \sum_{\pm i, \pm j,i < j} \left ( \alpha_{\pm i, \pm j} + \alpha_{\pm j, \pm i} \right ) T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = \sum_{\pm i, \pm j,i < j} \alpha*_{\pm i, \pm j}T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}}$
     112$\displaystyle \sum_{\pm i, \pm j,i \ne j} \alpha_{\pm i, \pm j} T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} = \sum_{\pm i, \pm j,i < j} \left ( \alpha_{\pm i, \pm j} + \alpha_{\pm j, \pm i} \right ) T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}} $
     113$= \sum_{\pm i, \pm j,i < j} \alpha*_{\pm i, \pm j}T^{\lambda+1}_{\pm \hat{i} \pm \hat{j}}$
    113114
    114115where