122 | | & = \partial_j \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_j \left ( \frac{\delta ^i_j\left(\partial_k \phi \partial_k \phi}{8 \pi G}+\bar{\rho}\phi \right) \right) \\ |
123 | | & = \partial_j T_{ij} \mbox{ where } T_{ij} = \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \delta ^i_j\left(\frac{\partial_k \phi \partial_k \phi}{8 \pi G}+\bar{\rho}\phi \right) \\ |
| 122 | & = \partial_j \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_j \left ( \delta^i_j \left ( \frac{\partial_k \phi \partial_k \phi}{8 \pi G} + \bar{\rho}\phi \right) \right ) \\ |
| 123 | & = \partial_j T_{ij} \mbox{ where } T_{ij} = \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \delta^i_j\left(\frac{\partial_k \phi \partial_k \phi}{8 \pi G}+\bar{\rho}\phi \right) \\ |