| 12 | | Normal CTU: |
| 13 | | * qLx = Reconstruct(q), etc... (for all 6 qxx states) |
| 14 | | * fx=Riemann_Solve(qLx,qRx), etc... (for all 3 edges) |
| 15 | | * q2 = q+fx+fy+fz |
| 16 | | * q2Lx=qLx+fy+fz etc... (for all 6 q2xx states) |
| 17 | | * f2x=Riemann_Solve(q2Lx,q2Rx) (for all 3 edges) |
| 18 | | * q3=q+f2x+f2y+f2z |
| 19 | | |
| 20 | | Strang split self-gravity: |
| 21 | | * '''q = q + SG(q, phi)*hdt''' |
| 22 | | * qLx = Reconstruct(q), etc... (for all 6 qxx states) |
| 23 | | * fx=Riemann_Solve(qLx,qRx), etc... (for all 3 edges) |
| 24 | | * q2 = q+fx+fy+fz |
| 25 | | * q2Lx=qLx+fy+fz etc... (for all 6 q2xx states) |
| 26 | | * f2x=Riemann_Solve(q2Lx,q2Rx) (for all 3 edges) |
| 27 | | * q3=q+f2x+f2y+f2z |
| 28 | | * '''q3=q3+SG(q3, phi)*hdt''' |
| 29 | | |
| 30 | | Momentum conserving self-gravity |
| 31 | | * qLx = Reconstruct(q), etc... (for all 6 qxx states) |
| 32 | | * ''' qLx(px) =qLx(px)+SG_x(q,phi)*hdt''' |
| 33 | | * ''' qLy(py) = qLy(py)+SG_y(q,phi)*hdt''' |
| 34 | | * ''' qLy(pz) = qLy(pz)+SG_z(q,phi)*hdt''' |
| 35 | | * fx=Riemann_Solve(qLx,qRx), etc... (for all 3 edges) |
| 36 | | * q2 = q+fx+fy+fz '''+ SG(q,phi)''' |
| 37 | | * q2Lx=qLx+fy+fz etc... (for all 6 q2xx states) |
| 38 | | * '''q2Lx=q2Lx+SG_y(q,phi)+SG_z(q,phi)''' (for all 6 q2xx states) |
| 39 | | * f2x=Riemann_Solve(q2Lx,q2Rx) (for all 3 edges) |
| 40 | | * '''f2x(p)=f2x(p)+SG_PFlux_x(phi) ''' (same for y and z) |
| 41 | | * q3=q+f2x+f2y+f2z'''+SG_EFlux_(f2x(rho),f2y(rho), f2z(rho), phi)''' |
| 42 | | |
| 43 | | SG_x has two non-zero terms... |
| 44 | | {{{ |
| 45 | | #!latex |
| 46 | | \[ |
| 47 | | \left [ |
| 48 | | \begin{array}{c} |
| 49 | | 0 \\ |
| 50 | | \rho \nabla_x \phi \\ |
| 51 | | 0 \\ |
| 52 | | 0 \\ |
| 53 | | \rho v_x \nabla_x \phi |
| 54 | | \end{array} |
| 55 | | \right ] |
| 56 | | \] |
| 57 | | }}} |
| 58 | | |
| 59 | | while SG_PFlux_x(phi) has only 1 non-zero term |
| 60 | | |
| 61 | | {{{ |
| 62 | | #!latex |
| 63 | | \[ |
| 64 | | \left [ |
| 65 | | \begin{array}{c} |
| 66 | | 0 \\ |
| 67 | | \frac{1}{8G\pi} \left ( (\nabla_x \phi)^2 - (\nabla_y\phi)^2 - (\nabla_z\phi)^2 \right ) + \bar{\rho}\phi \ \\ |
| 68 | | \frac{1}{4G\pi} \nabla_x \phi \nabla_y\phi \\ |
| 69 | | \frac{1}{4G\pi} \nabla_x \phi \nabla_z\phi \\ |
| 70 | | 0 |
| 71 | | \end{array} |
| 72 | | \right ] |
| 73 | | \] |
| 74 | | }}} |
| 75 | | |
| 76 | | and SG_EFlux(f2x, f2y, f2z, phi) is |
| 77 | | {{{ |
| 78 | | #!latex |
| 79 | | \[ |
| 80 | | \left [ |
| 81 | | \begin{array}{c} |
| 82 | | 0 \\ |
| 83 | | 0 \\ |
| 84 | | 0 \\ |
| 85 | | 0 \\ |
| 86 | | \rho v_x \nabla_x \phi + \rho v_y \nabla_y \phi + \rho v_z \nabla_z \phi |
| 87 | | \end{array} |
| 88 | | \right ] |
| 89 | | \] |
| 90 | | |
| 91 | | }}} |
| | 3 | Mathematically, we are solving the equation of hydrostatic equilibrium [[latex($\nabla P(r) = -\rho(r) \nabla \phi(r)$)]] subject to the constraint that [[latex($P(R)=P_0$)]]. Since [[latex($\phi(r) = \frac{G M(r)}{r}$)]] we can rewrite the equation for HSE as [[latex($\frac{dP}{dr}=\frac{GM(r)\rho(r)}{r^2}$)]] and we can express the enclosed mass as [[latex($M(r)=4\pi\displaystyle\int_0^r{\rho(r') r'^2dr'}$)]] |
| 94 | | Making the momentum be conserved requires recasting the gravitational force as a total differential |
| 95 | | |
| 96 | | |
| 97 | | [[latex($\dot p=-\rho \nabla \phi = -\nabla \cdot F$)]] so we need to find [[latex($F$)]] such that |
| 98 | | |
| 99 | | [[latex($\nabla \cdot F = \rho \nabla \phi$)]] |
| 100 | | |
| 101 | | Since [[latex($\nabla^2 \phi = 4\pi G (\rho-\bar{\rho})$)]] |
| 102 | | |
| 103 | | we can substitute for [[latex($\rho$)]] and we have |
| 104 | | |
| 105 | | [[latex($\nabla \cdot F = (\frac{\nabla^2\phi}{4 \pi G}+\bar{\rho}) \nabla \phi$)]] |
| 106 | | which is equivalent (in 1D) to [[latex($\nabla \cdot \left [\frac{1}{2} \frac{\left (\nabla \phi\right )^2}{4 \pi G} + \bar{\rho} \phi \right ]$)]] |
| 107 | | |
| 108 | | where we can identify the equivalent momentum flux tensor as [[latex($F=\frac{1}{2} \frac{\left (\nabla \phi\right )^2}{4 \pi G} + \bar{\rho} \phi$)]] |
| 109 | | |
| 110 | | |
| 111 | | * In more than 1D we have |
| 112 | | |
| 113 | | {{{ |
| 114 | | #!latex |
| 115 | | \begin{align*} |
| 116 | | \partial_t p_i&=\rho \partial_i \phi \\ |
| 117 | | & = \left (\frac{\partial_j(\partial_j \phi)}{4 \pi G}+\bar{\rho} \right ) \partial_i \phi \\ |
| 118 | | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right) - (\partial_j \phi) \partial_j (\partial_i \phi )}{4 \pi G}+\partial_i (\bar{\rho}\phi) \\ |
| 119 | | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right) - (\partial_j \phi) \partial_i (\partial_j \phi )}{4 \pi G}+\partial_i (\bar{\rho}\phi) \\ |
| 120 | | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_i\frac{(\partial_j \phi \partial_j \phi)}{8 \pi G}+\partial_i (\bar{\rho}\phi) \\ |
| 121 | | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_i\left ( \frac{ \partial_j \phi \partial_j \phi}{8 \pi G} +\bar{\rho}\phi \right) \\ |
| 122 | | & = \partial_j \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_j \left ( \delta^i_j \left ( \frac{\partial_k \phi \partial_k \phi}{8 \pi G} + \bar{\rho}\phi \right) \right ) \\ |
| 123 | | & = \partial_j T_{ij} \mbox{ where } T_{ij} = \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \delta^i_j\left(\frac{\partial_k \phi \partial_k \phi}{8 \pi G}+\bar{\rho}\phi \right) \\ |
| 124 | | \end{align*} |
| 125 | | }}} |