20 | | [[latex($\frac{\partial \left (e+E\right) }{\partial t}+\nabla\cdot\left[\left(e+P\right)\mathbf{v}\right]=\color{red}{ \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E} \color{green}{-\nabla \cdot \left ( \frac{3-R_2}{2}\mathbf{v}E\right )}$)]] |
| 20 | [[latex($\frac{\partial \left (e+E\right) }{\partial t}=\color{red}{ \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}$)]] |
| 21 | |
| 22 | which simplifies to |
| 23 | |
| 24 | [[latex($\left(1+\frac{\rho c_v}{4 E}\left(\frac{E}{a_R}\right )^{1/4}\right) \frac{\partial E}{\partial t}= \nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E$)]] |
| 25 | |
| 26 | |
| 27 | The second term in parenthesis represents the extra 'inertia' the radiation field has due to its coupling with the gas. It is non-linear and this limits the time step that can be taken. |
| 28 | |
| 29 | [[latex($\Delta t \approx \frac{E}{\frac{\partial E}{\partial t}} = \frac{\left(E+\frac{\rho c_v}{4}\left(\frac{E}{a_R}\right )^{1/4}\right)}{\nabla \cdot \frac{c\lambda}{\kappa_{0R}} \nabla E}$)]] |
| 30 | |
| 31 | == Changes to the discretization == |
| 32 | |
| 33 | |