3 | | [[latex($\left . \left ( E-\frac{2}{3\kappa}\nabla{E} \right ) \right |_0 = \frac{4}{c} F$)]] |
| 12 | Normal CTU: |
| 13 | * qLx = Reconstruct(q), etc... (for all 6 qxx states) |
| 14 | * fx=Riemann_Solve(qLx,qRx), etc... (for all 3 edges) |
| 15 | * q2 = q+fx+fy+fz |
| 16 | * q2Lx=qLx+fy+fz etc... (for all 6 q2xx states) |
| 17 | * f2x=Riemann_Solve(q2Lx,q2Rx) (for all 3 edges) |
| 18 | * q3=q+f2x+f2y+f2z |
| 19 | |
| 20 | Strang split self-gravity: |
| 21 | * '''q = q + SG(q, phi)*hdt''' |
| 22 | * qLx = Reconstruct(q), etc... (for all 6 qxx states) |
| 23 | * fx=Riemann_Solve(qLx,qRx), etc... (for all 3 edges) |
| 24 | * q2 = q+fx+fy+fz |
| 25 | * q2Lx=qLx+fy+fz etc... (for all 6 q2xx states) |
| 26 | * f2x=Riemann_Solve(q2Lx,q2Rx) (for all 3 edges) |
| 27 | * q3=q+f2x+f2y+f2z |
| 28 | * '''q3=q3+SG(q3, phi)*hdt''' |
| 29 | |
| 30 | Momentum conserving self-gravity |
| 31 | * qLx = Reconstruct(q), etc... (for all 6 qxx states) |
| 32 | * ''' qLx(px) =qLx(px)+SG_x(q,phi)*hdt''' |
| 33 | * ''' qLy(py) = qLy(py)+SG_y(q,phi)*hdt''' |
| 34 | * ''' qLy(pz) = qLy(pz)+SG_z(q,phi)*hdt''' |
| 35 | * fx=Riemann_Solve(qLx,qRx), etc... (for all 3 edges) |
| 36 | * q2 = q+fx+fy+fz '''+ SG(q,phi)''' |
| 37 | * q2Lx=qLx+fy+fz etc... (for all 6 q2xx states) |
| 38 | * '''q2Lx=q2Lx+SG_y(q,phi)+SG_z(q,phi)''' (for all 6 q2xx states) |
| 39 | * f2x=Riemann_Solve(q2Lx,q2Rx) (for all 3 edges) |
| 40 | * '''f2x(p)=f2x(p)+SG_PFlux_x(phi) ''' (same for y and z) |
| 41 | * q3=q+f2x+f2y+f2z'''+SG_EFlux_(f2x(rho),f2y(rho), f2z(rho), phi)''' |
| 42 | |
| 43 | SG_x has two non-zero terms... |
| 44 | {{{ |
| 45 | #!latex |
| 46 | \[ |
| 47 | \left [ |
| 48 | \begin{array}{c} |
| 49 | 0 \\ |
| 50 | \rho \nabla_x \phi \\ |
| 51 | 0 \\ |
| 52 | 0 \\ |
| 53 | \rho v_x \nabla_x \phi |
| 54 | \end{array} |
| 55 | \right ] |
| 56 | \] |
| 57 | }}} |
| 58 | |
| 59 | while SG_PFlux_x(phi) has only 1 non-zero term |
| 60 | |
| 61 | {{{ |
| 62 | #!latex |
| 63 | \[ |
| 64 | \left [ |
| 65 | \begin{array}{c} |
| 66 | 0 \\ |
| 67 | \frac{1}{8G\pi} \left ( (\nabla_x \phi)^2 - (\nabla_y\phi)^2 - (\nabla_z\phi)^2 \right ) + \bar{\rho}\phi \ \\ |
| 68 | \frac{1}{4G\pi} \nabla_x \phi \nabla_y\phi \\ |
| 69 | \frac{1}{4G\pi} \nabla_x \phi \nabla_z\phi \\ |
| 70 | 0 |
| 71 | \end{array} |
| 72 | \right ] |
| 73 | \] |
| 74 | }}} |
| 75 | |
| 76 | and SG_EFlux(f2x, f2y, f2z, phi) is |
| 77 | {{{ |
| 78 | #!latex |
| 79 | \[ |
| 80 | \left [ |
| 81 | \begin{array}{c} |
| 82 | 0 \\ |
| 83 | 0 \\ |
| 84 | 0 \\ |
| 85 | 0 \\ |
| 86 | \rho v_x \nabla_x \phi + \rho v_y \nabla_y \phi + \rho v_z \nabla_z \phi |
| 87 | \end{array} |
| 88 | \right ] |
| 89 | \] |
| 90 | |
| 91 | }}} |
6 | | One could instead do |
7 | | |
8 | | [[latex($E=\frac{4}{c}F$)]] |
9 | | |
10 | | or |
11 | | |
12 | | [[latex($ \frac{c}{3\kappa} \nabla E = F$)]] |
13 | | |
14 | | so that |
15 | | |
16 | | [[latex($\frac{\partial E}{\partial t} = \nabla \cdot \left ( \frac{c}{3\kappa} \nabla E \right ) = \nabla \cdot F$)]] |
17 | | |
18 | | In any even, if we discretize this mixed equation we get (E_g is ghost zone, E_i is internal zone at left edge) |
19 | | |
20 | | [[latex($E_g + E_i - \frac{4}{3\kappa \Delta x} \left ( E_i - E_g \right ) = \frac{8}{c} F$)]] |
21 | | |
22 | | which we can solve for [[latex($E_g$)]] as |
23 | | |
24 | | [[latex($E_g = \frac{\left ( 1 - \frac{3\kappa \Delta x}{4} \right ) E_i + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}}$)]] |
25 | | |
26 | | and we have |
27 | | [[latex($E_g - E_i = \frac{\left ( -\frac{6\kappa \Delta x}{4} \right ) E_i + \frac{3\kappa \Delta x}{4} \left ( \frac{8}{c} F \right )}{1 + \frac{3 \kappa \Delta x}{4}}$)]] |
| 94 | Making the momentum be conserved requires recasting the gravitational force as a total differential |
42 | | |
43 | | and finally we arrive at |
44 | | |
45 | | [[latex($\left ( 1+\frac{2 \psi \alpha}{1+\frac{4}{3\kappa\Delta x}} \right ) E^{n+1}_i = \left ( 1-\frac{2 \bar{\psi} \alpha}{1+\frac{4}{3\kappa\Delta x}} \right ) E^{n}_i+ \frac{\frac{8\alpha}{c} F}{1+\frac{4}{3\kappa \Delta x}}$)]] |
46 | | |
47 | | This is very similar to what we normally get ie |
48 | | |
49 | | [[latex($\left ( 1+\psi \alpha \right ) E^{n+1}_i - \psi \alpha E^{n+1}_g = \left ( 1-\bar{\psi} \alpha \right ) E^{n}_i + \bar{\psi} \alpha E^{n}_g$)]] |
50 | | |
51 | | |
52 | | and noting that [[latex($\alpha = \frac{c \Delta t}{3 \kappa \Delta x^2}$)]] for the limiter [[latex($\lambda=1/3$)]] |
53 | | |
54 | | or flux is just |
55 | | |
56 | | [[latex($F \frac{\Delta t}{\Delta x} \rightarrow F \frac{\Delta t}{\Delta x} \frac{2}{1+\frac{3\kappa\Delta x}{4}}$)]] |
57 | | |
58 | | |
59 | | |
60 | | Note that [[latex($E^{n+1}_i = E^{n}_i$)]] for |
61 | | |
62 | | [[latex($E = \frac{4F}{c}$)]] |
63 | | |
64 | | and that if [[latex($3 \kappa \Delta x = 4$)]] we revert to what we would expect if there was no Radiation energy in the ghost zone. |
65 | | |
| 113 | {{{ |
| 114 | #!latex |
| 115 | \begin{align*} |
| 116 | \partial_t p_i&=\rho \partial_i \phi \\ |
| 117 | & = \left (\frac{\partial_j(\partial_j \phi)}{4 \pi G}+\bar{\rho} \right ) \partial_i \phi \\ |
| 118 | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right) - (\partial_j \phi) \partial_j (\partial_i \phi )}{4 \pi G}+\partial_i (\bar{\rho}\phi) \\ |
| 119 | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right) - (\partial_j \phi) \partial_i (\partial_j \phi )}{4 \pi G}+\partial_i (\bar{\rho}\phi) \\ |
| 120 | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_i\frac{(\partial_j \phi \partial_j \phi)}{8 \pi G}+\partial_i (\bar{\rho}\phi) \\ |
| 121 | & = \frac{\partial_j \left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_i\frac{ \left (\partial_j \phi \partial_j \phi}{8 \pi G} +\bar{\rho}\phi \right) \\ |
| 122 | & = \partial_j \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \partial_j \frac{\left ( \delta ^i_j\left(\partial_k \phi \partial_k \phi}{8 \pi G}+\bar{\rho}\phi \right) \right) \\ |
| 123 | & = \partial_j T_{ij} \mbox{ where } T_{ij} = \frac{\left ( \partial_j \phi \partial_i \phi \right)}{4 \pi G} - \delta ^i_j\left(\frac{\partial_k \phi \partial_k \phi}{8 \pi G}+\bar{\rho}\phi \right) \\ |
| 124 | \end{align*} |
| 125 | }}} |