[ \left [
\begin{array}{c}
\partial_t{\rho_1} \\
\partial_t{v_1} \\
\partial_{xx}{\phi_1} \\
\end{array}
\right ]
=\left [
\begin{array}{c}
-\rho_0\partial_x v_1 \\
-\frac{c_s^2}{\rho_0}\partial_x \rho_1 -\partial_x \phi_1 \\
4 \pi G \rho_1
\end{array}
\right ] = \left [
\begin{array}{ccc}
0 & -\rho_0\partial_x & 0 \\
-\frac{c_s^2}{\rho_0}\partial_x & 0 & -\partial_x \\
4 \pi G & 0 & 0
\end{array}
\right ]
\left [
\begin{array}{c}
\rho_1\\
v_1 \\
\phi_1 \\
\end{array}
\right ]
\]
\[
\partial_t
\left [
\begin{array}{c}
\rho_1 \\
v_1 \\
\end{array}
\right ]
=
\left [
\begin{array}{cc}
0 & -ik\rho_0 \\
-ik\frac{c_s^2}{\rho_0} + \frac{4 \pi i G}{k} & 0 \\
\end{array}
\right ]
\left [
\begin{array}{c}
\rho_1\\
v_1 \\
\end{array}
\right ]
\]
which gives a characteristic equation
\lambda^2 + k^2 c_s^2 -4 \pi G \rho_0 = 0
and we have
\lambda = \pm \sqrt{4 \pi G \rho_0-k^2 c_s^2}
with eigen vectors
[
\left [
\begin{array}{c}
k \rho_0 \\
i \lambda
\end{array}
\right ]
\]
So for stable waves we have \lambda = i\omega where \omega is real. And there are two solutions…
[
\left [
\begin{array}{c}
\rho_1 \\
v_1 \\
\end{array}
\right ]
=
\left [
\begin{array}{c}
d\rho e^{\pm i \omega t} e^{i k x} \\
dv e^{\pm i \omega t} e^{i k x} \\
\end{array}
\right ]
\]
where
dv = -\frac{\omega}{k}\frac{d\rho}{\rho}$
So if \lambda=\omega where \omega is real - then we have two solutions as well.
[
\left [
\begin{array}{c}
\rho_1 \\
v_1 \\
\end{array}
\right ]
=
\left [
\begin{array}{c}
d\rho e^{\pm \omega t} e^{i k x} \\
dv e^{\pm \omega t} e^{i k x + i \pi} \\
\end{array}
\right ]
\]