| 72 | | DO |
| 73 | | |
| 74 | | Calculate the displacement vector from the primary at the retarded time |
| 75 | | |
| 76 | | [[latex($\vec{d} = \vec{x}-\vec{X}_p(t_r)$)]] |
| 77 | | |
| 78 | | Calculate the wind normal so that |
| 79 | | |
| 80 | | [[latex($(v_w \hat{n} + \vec{V}_p(t_r)) \times \vec{d} = 0$)]] |
| 81 | | |
| 82 | | [[latex($\hat{n} \times \vec{d} = \frac{-1}{v_w}\vec{V}_p(t_r) \times \vec{d}$)]] |
| 83 | | |
| 84 | | It is possible to solve [[latex($\hat{a} \times \vec{b} = \vec{c}$)]] for the unit vector [[latex($\hat{a}$)]] |
| 85 | | |
| 86 | | [[latex($\hat{a}=\frac{\vec{b} \times \vec{c} + \sqrt{\vec{b} \cdot \vec{b} - \frac{(\vec{b} \times \vec{c}) \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot \vec{b}}} \vec{b}}{\vec{b} \cdot \vec{b}}$)]] |
| | 85 | Heitsch, Hartmann, and Burkert "Fragmentation of Shocked Flows: Gravity, Turbulence, and Cooling" |
| | 86 | * Theory paper |
| | 87 | * Star formation happens soon after MC formation |
| | 88 | * Density enhancements are produced along with MC - problem with 'condensation models' |
| | 89 | * Nead non-linear density enhancements - faster than gravity |
| | 90 | * Discuss TI, GI, NTSI, KHI |
| | 91 | * Phase diagrams with lines outlining dominate instabilities |
| | 92 | * Dynamical and thermal instabilities dominate on small scales |
| | 93 | * Thermal fragmentatation dominates gravitational fragmentation during cloud formation |
| | 94 | * TI alone cannot produce jeans unstable clumps... need additional global compression |
| 101 | | And then solve for the unit vector that gives that direction |
| 102 | | |
| 103 | | [[latex($ \hat{n} \times \vec{v}' = \frac{-1}{v_w}\vec{V}_p(t_r) \times \vec{v}' $)]] |
| 104 | | |
| 105 | | |
| 106 | | Cycle until [[latex($x' \approx x$)]] |
| 107 | | |
| 108 | | Update the retarded time using the new distance and wind speed |
| 109 | | |
| 110 | | [[latex($t_r=t-(t'-t_r)$)]] |
| 111 | | |
| 112 | | END DO |
| 113 | | |
| 114 | | The only problem occurs when there are multiple solutions for the retarded time... |
| 115 | | |
| 116 | | This will occur once we reach distances of order [[latex($v_w/\Omega$)]] |
| 117 | | |
| 118 | | If we switch to a rotating frame that rotates counter to the orbit so the angular speed is [[latex($\Omega$)]], then |
| 119 | | |
| 120 | | [[latex($\vec{v}_r=\vec{v}-\Omega \times \vec{x}$)]] |
| 121 | | |
| 122 | | and |
| 123 | | |
| 124 | | [[latex($\alpha=\alpha_0+\Omega t$)]] |
| 125 | | |
| 126 | | so that |
| 127 | | |
| 128 | | [[latex($\Omega t_r+\alpha = \alpha_0 - \Omega \frac{d}{v_w}$)]] |
| | 103 | Inoue and Inutsuka 2012 |
| | 104 | * Colliding Flows in 3D |
| | 105 | * Richtmyer-Meshkov instability |
| | 106 | * No dynamical sg |
| | 107 | * 1024^3^ |