Changes between Version 20 and Version 21 of u/johannjc
- Timestamp:
- 06/16/12 18:12:46 (12 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/johannjc
v20 v21 57 57 * Look at 'core' properties (though 2D and no SG) 58 58 59 Heitsch et al 2006 60 * 61 62 == Random Ruminations == 59 Heitsch et al 2006 "Birth of Molecular Clouds" 60 * Extended 2005 work to 3D 61 * no sg and hydro 62 * sinusoidal interface 63 * .5 particles/cc 64 * periodic (open in 2D) 63 65 64 66 65 So setting up the initial solution can be accomplished by the following: 67 Audit & Hennebelle 2005 68 * 2D colliding flows 69 70 Heitsch et al 2006 "Magnetized Non-Linear thin shell instability -2D" 71 * 2D MHD using PROTEUS 72 * Fields weaken or suppress NTSI 66 73 67 First start with the assumption that the retarted time is the current time 74 Heitsch et al 2006 "Cloud Dispersal in Turbulent Flows" 75 * no sg- looked at turbulent dispersal of clouds 68 76 69 [[latex($t_r=t$)]] 77 Heitsch, Stone, and Hartmann 2008 "Effects of Magnetic Field Strencth and Orientation on Molecular Cloud Formation" 78 79 * Athena 3D 256^3^ - no sg - mhd 80 * Fields are important to resulting structure 81 * Fields normal to flow favor filamentary structure in collision plane 82 * Fields perpendicular to flow (ie y ) suppress ntsi along field axis (ky /= 0) and give an extended slab with filaments normal to field 70 83 71 84 72 DO 73 74 Calculate the displacement vector from the primary at the retarded time 75 76 [[latex($\vec{d} = \vec{x}-\vec{X}_p(t_r)$)]] 77 78 Calculate the wind normal so that 79 80 [[latex($(v_w \hat{n} + \vec{V}_p(t_r)) \times \vec{d} = 0$)]] 81 82 [[latex($\hat{n} \times \vec{d} = \frac{-1}{v_w}\vec{V}_p(t_r) \times \vec{d}$)]] 83 84 It is possible to solve [[latex($\hat{a} \times \vec{b} = \vec{c}$)]] for the unit vector [[latex($\hat{a}$)]] 85 86 [[latex($\hat{a}=\frac{\vec{b} \times \vec{c} + \sqrt{\vec{b} \cdot \vec{b} - \frac{(\vec{b} \times \vec{c}) \cdot (\vec{b} \times \vec{c})}{\vec{b} \cdot \vec{b}}} \vec{b}}{\vec{b} \cdot \vec{b}}$)]] 85 Heitsch, Hartmann, and Burkert "Fragmentation of Shocked Flows: Gravity, Turbulence, and Cooling" 86 * Theory paper 87 * Star formation happens soon after MC formation 88 * Density enhancements are produced along with MC - problem with 'condensation models' 89 * Nead non-linear density enhancements - faster than gravity 90 * Discuss TI, GI, NTSI, KHI 91 * Phase diagrams with lines outlining dominate instabilities 92 * Dynamical and thermal instabilities dominate on small scales 93 * Thermal fragmentatation dominates gravitational fragmentation during cloud formation 94 * TI alone cannot produce jeans unstable clumps... need additional global compression 87 95 88 96 89 Once we have an estimate for [[latex($\hat{n}$)]] we can improve the estimate by modifying the trajectory to account for the gravity from the secondary as follows:90 97 91 Calculate the wind velocity from the primary92 93 [[latex($\vec{v}(t_r, x_p(t_r))=|v_w \hat{n}+\vec{V}_p(t_r)|$)]]94 98 95 Now solve for the trajectory from the primary that leaves at [[latex($\vec{X_p}(t_r)$)]] at velocity [[latex($\vec{v}(t_r, x_p(t_r))$)]] taking into account the force from the secondary. 99 VazqueszSemadeni 2006 100 * Velocity perturbations 96 101 97 Determine the path's distance of closest approach to [[latex($\vec{x}$)]] and call that [[latex($\vec{x}'(t')$)]]98 99 Estimate the change in initial velocity needed [[latex($\vec{v'}(t_r,x_p(t_r) = \vec{v}(t_r,x_p(t_r))+\frac{x-x'(t')}{t'-t_r}$)]]100 102 101 And then solve for the unit vector that gives that direction 102 103 [[latex($ \hat{n} \times \vec{v}' = \frac{-1}{v_w}\vec{V}_p(t_r) \times \vec{v}' $)]] 104 105 106 Cycle until [[latex($x' \approx x$)]] 107 108 Update the retarded time using the new distance and wind speed 109 110 [[latex($t_r=t-(t'-t_r)$)]] 111 112 END DO 113 114 The only problem occurs when there are multiple solutions for the retarded time... 115 116 This will occur once we reach distances of order [[latex($v_w/\Omega$)]] 117 118 If we switch to a rotating frame that rotates counter to the orbit so the angular speed is [[latex($\Omega$)]], then 119 120 [[latex($\vec{v}_r=\vec{v}-\Omega \times \vec{x}$)]] 121 122 and 123 124 [[latex($\alpha=\alpha_0+\Omega t$)]] 125 126 so that 127 128 [[latex($\Omega t_r+\alpha = \alpha_0 - \Omega \frac{d}{v_w}$)]] 103 Inoue and Inutsuka 2012 104 * Colliding Flows in 3D 105 * Richtmyer-Meshkov instability 106 * No dynamical sg 107 * 1024^3^