5 | | Boundary noise can manifest when subsonic waves near the boundary cause errors that may propagate inward with speed less or equal to the sound speed. Thus to consider if such a disturbance has time enough to travel from the boundary to the BE sphere/ambient boundary, I put together this table that shows the sound speed of the ambient, the final time of the simulation, and the distance that a sonic wave would travel in this time. For all cases, except for the stability and 1/30 ambient cases, sonic disturbances from the boundary do not have time enough to propagate from the boundary to the sphere's surface. Note, I have taken the boundary to be the sphere of radius = 15, centered on the origin. The physical boundary conditions on the box are set to extrapolating with perpendicular velocities set to 0 using winds on all outward faces, and reflective on the inward faces. The Poisson boundary conditions are set to multipole on outward faces, and reflective on inward faces. Every spatial unit is in terms of Rbe, the Bonnor Ebert sphere's radius. So 1 computational unit on the domain = 1 Rbe. |
| 5 | Boundary noise can manifest when subsonic waves near the boundary cause errors that may propagate inward with speed less or equal to the sound speed. Thus to consider if such a disturbance has time enough to travel from the boundary to the BE sphere/ambient boundary, I put together this table that shows the sound speed of the ambient, the final time of the simulation, and the distance that a sonic wave would travel in this time. For all cases, except for the stability and 1/30 ambient cases, sonic disturbances from the boundary do not have time enough to propagate from the boundary to the sphere's surface. Note, I have taken the boundary to be the sphere of radius = 15, centered on the origin. The physical boundary conditions on the box are set to extrapolating with perpendicular velocities set to 0 using winds on all outward faces, and reflective on the inward faces. The Poisson boundary conditions are set to multipole on outward faces, and reflective on inward faces. Every spatial unit is in terms of Rbe, the Bonnor Ebert sphere's radius. So 1 computational unit on the domain = 1 Rbe. Further, the domain is 15 Rbe long in each dimension. |