Changes between Version 1 and Version 2 of u/zchen/2/Isothermalwind
- Timestamp:
- 02/23/14 20:23:34 (11 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
u/zchen/2/Isothermalwind
v1 v2 5 5 Use $p=\frac{\rho RT}{\mu}$ and $\frac{RT}{\mu}=a^2$ become: 6 6 7 $v\frac{dv}{dr}=-\frac{1}{\rho}\frac{d\rho}{dr}-\frac{1}{\rho}\frac{GM}{r^2}+f'(r,v)+g'(r,v)v\frac{dv}{dr}$ (1)7 $v\frac{dv}{dr}=-\frac{1}{\rho}\frac{d\rho}{dr}-\frac{1}{\rho}\frac{GM}{r^2}+f'(r,v)+g'(r,v)v\frac{dv}{dr}$ (1) 8 8 9 9 Where $f'(r,v)=\frac{f(r,v)}{\rho}$ $g'(r,v)=\frac{g(r,v)}{\rho}$ … … 11 11 Differentiate $\dot{M}=4\pi r^2\rho v$ with respect to $r$, get 12 12 13 $\frac{1}{\rho}\frac{d\rho}{dr}=-\frac{1}{v}\frac{dv}{dr}-\frac{2}{r}$ (2)13 $\frac{1}{\rho}\frac{d\rho}{dr}=-\frac{1}{v}\frac{dv}{dr}-\frac{2}{r}$ (2) 14 14 15 15 Substitute (2) into (1) 16 16 17 $\frac{1}{v}\frac{dv}{dr}=\frac{\frac{2a^2}{r}-\frac{GM}{r^2}+f'(r,v)}{(1-g'(r,v))v^2-a^2}$ 17 $\frac{1}{v}\frac{dv}{dr}=\frac{\frac{2a^2}{r}-\frac{GM}{r^2}+f'(r,v)}{(1-g'(r,v))v^2-a^2}$ (3) 18 18 19 19 Critical point will happen at: